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Automatic sequences

Definition

A sequence (ay)n>0 of elements in A is k-automatic if there is a
DFAO (S, Xk, 6, so, A, w) such that a,, = w(d(sg,ne---ning)) for
all n > 0, where ng---ning is the standard base-k representation
of n, fed in reverse reading.

Example (Apéry numbers mod 16)
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The 2-automatic sequence produced by this automaton is

(an)nZO — 1, 5, 9, 5, 9, 13...




Theorem (Christol 1979) Let S C N and let a,, =1 ifn € S,
an = 0 otherwise. Then (ay)n>0 is p-automatic if and only if
Y neg X" is algebraic over F(x).

Theorem (Christol-Kamae—Mendés France-Rauzy 1980) Let
(an)n>0 be a sequence in Fy. Then (a,)n>0 is p-automatic if and
only if 3_,~oanx™ is algebraic over Fy(z).

Definition

Let a = (an)n>0 be a p-automatic sequence. The reverse (direct)
reading complexity of a, denoted comp,(a) ( comp, (a)), is the

size of the minimal automaton generating a = (ay)n>0 in reverse
(direct) reading.

Question: If A(x,y) has height h and degree d, what is an upper
limit for comp,(a) or coﬁpq (a), in terms of d and h?



Theorem (Christol, quantitative) If f(z) =3 5jana" is
annihilated by A(z,y) of height h and degree d, then comp,(a)
1. can be made explicit
(Harase, 88, 89)
2. s at most qid(h(2d*=2d+1)+C(q)),
(Fresnel, Koskas, de Mathan, 2000.)
3. is at most qd4h2‘15d,
is at most ¢, where A = A(h,d).
(Adamczewski, Bell, 2012, 2013.)
4. s at most ¢"4(1 + o(1)) for large values of q, d or h.
(Bridy, 2016.)
5. is at most ¢"TDI1(1 4 o(1)) for large values of q, d, or h.
(Adamczewski, Y, 2019.)




The tools: The Cartier operators

Let £€ {0,1,...,q — 1}. The Cartier operator
Ay Fy[[z]] = Fy[lz]] is the map defined by

Ay Z apx” | = Z Agntex”.

n>0 n>0

Let €21 denote the monoid generated by these operators under

composition.
We call Q;(f) the g-kernel of a.

Theorem (Eilenberg) The sequence a = (ay,)n>0 is g-automatic if
and only if it has a finite q-kernel. Moreover, [Q1(f)| = comp,(a). J




Labelling a minimal automaton for a with €;(f)
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Proof of “algebraic implies automatic” in CKMR, 1980

Input: A(z,y) € Fylz,y|, degree d, height h, with A(x, f(z)) = 0.
Strategy: Find an [ -vector space V' of finite dimension which
contains f(z), such that Q(V) C V.

Tool: Use an Ore polynomial to define V:

Consider

{ZC degC())SN}a

then Q1(V) C V, and dimg, (V) < dN, so comp,(a) < ¢*V.
Problem: N is exponential in q.



Speyer's proof of Christol's theorem

Input: A(z,y) € Fylx,y|, degree d, height h, with A(x, f(z)) = 0.
Strategy: Find an [ -vector space V' of finite dimension which
"contains" f(x), such that O (V) C V.

Tool: Use the Riemann-Roch theorem to find vector spaces V'
which are Q; invariant.

Consider the variety V4 = {(z,y) € Py x P, : A(z,y) =0},

where we assume that the curve defined by A(x,y) =0 is
projective and nonsingular.

Let K4 be V4's function field, and let

Ka={g(x)dz : g(x) € Ka,x is a separating variable, i.e. z ¢ K|}

Theorem (Riemann-Roch) Given an effective divisor D,
Vp :={f(z)dz € K4 : vp(f(z)dz) > —Dp}

is a vector space of dimension deg(D) + g — 1 over IF,,.




Bridy's quantification of Speyer's proof
The Cartier operator 1~Xp_1 : K4 — K4 is defined by

A 1/p
-1 (Z anz"d > Z Uy 12"
n
and it captures where fdz will have residues.

Theorem (Bridy, 2016) Let D be the divisor generated by f(z)dz
Then

Ql(VD) C Vp,
and Vp has F,-dimension h +3d + g — 1 < hd 4+ 2d = (h + 2)d.

V.

Theorem (Bridy, 2016) There exist nested vector spaces W C V,
of Fy-dimension hd and (h + 2)d, such that Q;(f) C V and
11 ()\W| = o(1)g". Thus

|compq(a)\ < qhd(l +0(1)).




Bridy's and our proof in pictures
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Christol’s first proof of his theorem (1979)

Theorem (Furstenberg, 1967) Let x be a field and let
A(x,y) € k[z,y]. Let f(z) € xk][[z]] be a root of A(x,y). If
%(0,0) # 0 then

%, (@y,y)
y 1A(zy,y)

-

0A 0A
B yoy (v, y) V) Y5y (2Y,9)
Adf) = A (A <y‘1A(:vy,y)>> -8 (AM (y‘lA(wy, )
R (Az,e (y%(wy,y)yl‘qfl(xy, y)ql))

y~tA(zy,y)




Finishing Christol’s proof in the nonsingular case

Mgy (y%(ﬂfy, y)y' T A(zy, y)q_l)

Adlf) =4 ( y 1 A(zy,y) ) ’

hence if A(z,y) is nonsingular at the origin and A(0,0) = 0,

=)'y N\ - ,
V::SpanFq{<y_114(xy’y> OSZSh,OSJSd

is Ay -invariant and Q1 (f) C A(V). So comp,(a) < gh+D@+D),
With a tiny bit more care we have:

Theorem (Adamczewski-Y) If f(x) =), <, ana™ is annihilated
by P(x,y), with %(0,0) # 0 and A(0,0) =0, then

comp,(a) < 1+ gh+Dd,




Finishing Christol’s proof in the singular case

If A(z,vy) is singular at the origin, let r be the order at 0 of the
resultant of A(z,y) and %(m, y). We can explicitly define

polynomials M (z,y), such that after a little 0o(1)¢"? trip, the
Cartier operators applied to f land in A(V'), where

(zy)' M (zy,y)’

:r—1§i§h+r,0§j§d—1}.
ytA(zy, y)

V := spang, {

Theorem (Adamczewski-Y) Let f(z) =3, 5qana" € Fy[[z]] be
an algebraic power series of degree d and height h. Then

compy (@) < (14 o(1))g" D41,

where the o(1) term tends to O for large values of any of q, h, or d.

v




Implications for the size of direct reading automata

Let f(z) = > ana™ € Fy[[z]] be algebraic over F,(z), annihilated
by A(z,y) of degree d and height h.

Theorem (Bridy, 2016) The forward and reverse reading
complexity of a are at most ¢\,

Theorem (Adamczewski,Y, 2019 ) Let r be the order at 0 of the
resultant of A(x,y) and %(az, y). Then the forward and reverse

reading complexity of a are at most ¢(hTDd+1+r,
In particular, coﬁpq (@) < gfEeriE=ET




The interpretation of the genus ¢

“The genus g of y will be the genus of the normalization of the
projective closure of the affine plane curve defined by the minimal
polynomial of y."

Definition (via Riemann-Roch)

The genus is g := dim(Vp) — deg(D) + 1 for any effective divisor
D.

Theorem (Bridy, 2016) Let f(x) = ) ana™ € Fy[[z]] be algebraic

over IF,,(x), annihilated by A(z,y) of degree d, height h and genus

g The forward and reverse reading complexity of (a,,) is at most
qh+2d+g—1'

Theorem (Beelen 2009) Let P be the Newton polygon of A(x,y),
and let g4 be the number of integral points in the interior of P. If
A(x,y) is irreducible over F, then g < ga.

4

We can formulate similar bounds to Bridy's using g4 instead of g.



Tightness of bounds?

Theorem (Bridy) If d = 1, then for every prime power q and every
positive integer h > 1 there exists a polynomial A(x,y) whose root
has a q-kernel with at least q" elements.

Open question
If d > 2, are these bounds tight?

Open question
Can one easily bound the orbit of {Af(f):n > 0}7



The strengths and limits of Furstenberg's method

Strengths:

» Extension to functions of several variables over any field,

» Extension to bounding (automaton) complexity of integer

sequences a mod p®, for almost all p and any diagonal a.

Theorem (Denef-Lipshitz, 1987) If f(x) =), <o ana" € Zp[[x]]
is algebraic over Zy,(x), then a mod p® is p-automatic for any
a € N.

Limits:
Example Let z =) -, T,x" be the generating function of the
sequence of central trinomial coefficients. It satisfies

P(z,2)=(z+1)(3z—1)22+1=0.

For every av € N (T, mod 2%),>¢ is 2-automatic. However
P(z,y) mod 2 is not irreducible, so no separation of roots is
possible and we cannot apply Furstenberg's theorem to compute
(T5, mod 2%),>0. Are there any efficient techniques to do this?




