A quantitative version of Christol's theorem

Reem Yassawi

Université Claude Bernard Lyon 1, France

June 29, 2019

Automatic sequences

Definition

A sequence $(a_n)_{n\geq 0}$ of elements in \mathcal{A} is *k*-automatic if there is a DFAO $(\mathcal{S}, \Sigma_k, \delta, s_0, \mathcal{A}, \omega)$ such that $a_n = \omega(\delta(s_0, n_\ell \cdots n_1 n_0))$ for all $n \geq 0$, where $n_\ell \cdots n_1 n_0$ is the standard base-*k* representation of n, fed in reverse reading.

Example (Apéry numbers mod 16)

The 2-automatic sequence produced by this automaton is

$$(a_n)_{n\geq 0} = 1, 5, 9, 5, 9, 13 \dots$$

Theorem (Christol 1979) Let $S \subset \mathbb{N}$ and let $a_n = 1$ if $n \in S$, $a_n = 0$ otherwise. Then $(a_n)_{n \geq 0}$ is *p*-automatic if and only if $\sum_{n \in S} x^n$ is algebraic over $\mathbb{F}_p(x)$.

Theorem (Christol–Kamae–Mendès France–Rauzy 1980) Let $(a_n)_{n\geq 0}$ be a sequence in \mathbb{F}_q . Then $(a_n)_{n\geq 0}$ is *p*-automatic if and only if $\sum_{n\geq 0} a_n x^n$ is algebraic over $\mathbb{F}_q(x)$.

Definition

Let $\mathbf{a} = (a_n)_{n \ge 0}$ be a *p*-automatic sequence. The reverse (direct) reading complexity of \mathbf{a} , denoted $\operatorname{comp}_q(\mathbf{a})$ ($\overrightarrow{\operatorname{comp}}_q(\mathbf{a})$), is the size of the minimal automaton generating $\mathbf{a} = (a_n)_{n \ge 0}$ in reverse (direct) reading.

Question: If A(x, y) has height h and degree d, what is an upper limit for $\operatorname{comp}_q(\mathbf{a})$ or $\operatorname{comp}_q(\mathbf{a})$, in terms of d and h?

Theorem (Christol, quantitative) If $f(x) = \sum_{n\geq 0} a_n x^n$ is annihilated by A(x, y) of height h and degree d, then comp_a(**a**)

- 1. can be made explicit (Harase, 88, 89)
- 2. is at most $q^{qd(h(2d^2-2d+1)+C(q))}$. (Fresnel, Koskas, de Mathan, 2000.)
- 3. is at most $q^{d^4h^2q^{5d}}$, is at most q^A , where A = A(h, d). (Adamczewski, Bell, 2012, 2013.)
- 4. is at most $q^{hd}(1 + o(1))$ for large values of q, d or h. (Bridy, 2016.)
- 5. is at most $q^{(h+1)d+1}(1+o(1))$ for large values of q, d, or h. (Adamczewski, Y, 2019.)

The tools: The Cartier operators

Let $\ell \in \{0, 1, \dots, q-1\}$. The Cartier operator $\Lambda_{\ell} : \mathbb{F}_q[[x]] \to \mathbb{F}_q[[x]]$ is the map defined by

$$\Lambda_{\ell}\left(\sum_{n\geq 0}a_nx^n\right) := \sum_{n\geq 0}a_{qn+\ell}x^n.$$

Let Ω_1 denote the monoid generated by these operators under composition.

We call $\Omega_1(f)$ the *q*-kernel of **a**.

Theorem (Eilenberg) The sequence $\mathbf{a} = (a_n)_{n \ge 0}$ is *q*-automatic if and only if it has a finite *q*-kernel. Moreover, $|\Omega_1(f)| = \text{comp}_a(\mathbf{a})$.

Labelling a minimal automaton for \mathbf{a} with $\Omega_1(f)$

Proof of "algebraic implies automatic" in CKMR, 1980

Input: $A(x, y) \in \mathbb{F}_q[x, y]$, degree d, height h, with A(x, f(x)) = 0. Strategy: Find an \mathbb{F}_q -vector space V of finite dimension which contains f(x), such that $\Omega_1(V) \subset V$. Tool: Use an Ore polynomial to define V:

$$A_0(x)f(x) = \sum_{i=1}^d A_i(x)(f(x))^{q^i}.$$

Consider

$$V = \left\{ \sum_{i=1}^{d} C_i(x) f^{q^i} : \deg(C_i(x)) \le N \right\},\$$

then $\Omega_1(V) \subset V$, and $\dim_{\mathbb{F}_q}(V) \leq dN$, so $\operatorname{comp}_q(\mathbf{a}) \leq q^{dN}$. Problem: N is exponential in q.

Speyer's proof of Christol's theorem

Input: $A(x, y) \in \mathbb{F}_q[x, y]$, degree d, height h, with A(x, f(x)) = 0. Strategy: Find an \mathbb{F}_q -vector space V of finite dimension which "contains" f(x), such that $\tilde{\Omega}_1(V) \subset V$.

Tool: Use the Riemann-Roch theorem to find vector spaces V which are $\tilde{\Omega}_1$ invariant.

Consider the variety $\mathcal{V}_A = \{(x, y) \in \mathbb{P}_q \times \mathbb{P}_q : A(x, y) = 0\}$, where we assume that the curve defined by A(x, y) = 0 is projective and nonsingular.

Let K_A be \mathcal{V}_A 's function field, and let

 $\mathcal{K}_A = \{g(x)dx : g(x) \in K_A, x \text{ is a separating variable, i.e. } x \notin K_A^p\}.$

Theorem (Riemann-Roch) Given an effective divisor D,

$$V_D := \{ f(x) dx \in \mathcal{K}_A : \nu_P(f(x) dx) \ge -D_P \}$$

is a vector space of dimension deg(D) + g - 1 over \mathbb{F}_p .

Bridy's quantification of Speyer's proof The Cartier operator $\tilde{\Lambda}_{p-1} : \mathcal{K}_A \to \mathcal{K}_A$ is defined by

$$\tilde{\Lambda}_{p-1}\left(\sum_{n}a_{n}x^{n}dx\right) := \sum_{n=0}^{\infty}a_{np+p-1}^{1/p}x^{n}dx$$

and it captures where fdx will have residues.

Theorem (Bridy, 2016) Let D be the divisor generated by f(x)dx. Then

 $\tilde{\Omega}_1(V_D) \subset V_D,$

and V_D has \mathbb{F}_q -dimension $h + 3d + g - 1 \leq hd + 2d = (h + 2)d$.

Theorem (Bridy, 2016) *There exist nested vector spaces* $W \subset V$, of \mathbb{F}_q -dimension hd and (h+2)d, such that $\Omega_1(f) \subset V$ and $|\Omega_1(f) \setminus W| = o(1)q^{hd}$. Thus

 $|\operatorname{comp}_q(\mathbf{a})| \le q^{hd}(1+o(1)).$

Bridy's and our proof in pictures

Christol's first proof of his theorem (1979)

Theorem (Furstenberg, 1967) Let κ be a field and let $A(x,y) \in \kappa[x,y]$. Let $f(x) \in x\kappa[[x]]$ be a root of A(x,y). If $\frac{\partial A}{\partial y}(0,0) \neq 0$ then

$$f(x) = \Delta \left(\frac{y \frac{\partial A}{\partial y}(xy, y)}{y^{-1}A(xy, y)} \right)$$

$$\begin{split} \Lambda_{\ell}(f) &= \Lambda_{\ell} \left(\Delta \left(\frac{y \frac{\partial A}{\partial y}(xy,y)}{y^{-1}A(xy,y)} \right) \right) = \Delta \left(\Lambda_{\ell,\ell} \left(\frac{y \frac{\partial A}{\partial y}(xy,y)}{y^{-1}A(xy,y)} \right) \right) \\ &= \Delta \left(\frac{\Lambda_{\ell,\ell} \left(y \frac{\partial A}{\partial y}(xy,y)y^{1-q}A(xy,y)^{q-1} \right)}{y^{-1}A(xy,y)} \right) \end{split}$$

Finishing Christol's proof in the nonsingular case

$$\Lambda_{\ell}(f) = \Delta\left(\frac{\Lambda_{\ell,\ell}\left(y\frac{\partial A}{\partial y}(xy,y)y^{1-q}A(xy,y)^{q-1}\right)}{y^{-1}A(xy,y)}\right),$$

hence if A(x,y) is nonsingular at the origin and A(0,0) = 0,

$$V := \operatorname{span}_{\mathbb{F}_q} \left\{ \left(\frac{(xy)^i y^j}{y^{-1} A(xy, y)} \right) : 0 \le i \le h, 0 \le j \le d \right\}$$

is $\Lambda_{\ell,\ell}$ -invariant and $\Omega_1(f) \subset \Delta(V)$. So $\operatorname{comp}_q(\mathbf{a}) \leq q^{(h+1)(d+1)}$. With a tiny bit more care we have:

Theorem (Adamczewski-Y) If $f(x) = \sum_{n\geq 0} a_n x^n$ is annihilated by P(x, y), with $\frac{\partial A}{\partial y}(0, 0) \neq 0$ and A(0, 0) = 0, then $\operatorname{comp}_q(\mathbf{a}) \leq 1 + q^{(h+1)d}$.

Finishing Christol's proof in the singular case

If A(x, y) is singular at the origin, let r be the order at 0 of the resultant of A(x, y) and $\frac{\partial A}{\partial y}(x, y)$. We can explicitly define polynomials M(x, y), such that after a little $o(1)q^{hd}$ trip, the Cartier operators applied to f land in $\Delta(V)$, where

$$V := \operatorname{span}_{\mathbb{F}_q} \left\{ \frac{(xy)^i M(xy,y)^j}{y^{-1} A(xy,y)} : r - 1 \le i \le h + r, 0 \le j \le d - 1 \right\}.$$

Theorem (Adamczewski-Y) Let $f(x) = \sum_{n \ge 0} a_n x^n \in \mathbb{F}_q[[x]]$ be an algebraic power series of degree d and height h. Then

 $\operatorname{comp}_q(\mathbf{a}) \le (1 + o(1))q^{(h+1)d+1},$

where the o(1) term tends to 0 for large values of any of q, h, or d.

Implications for the size of direct reading automata

Let $f(x) = \sum a_n x^n \in \mathbb{F}_q[[x]]$ be algebraic over $\mathbb{F}_q(x)$, annihilated by A(x, y) of degree d and height h.

Theorem (Bridy, 2016) *The forward and reverse reading* complexity of a are at most $q^{(h+1)d}$.

Theorem (Adamczewski,Y, 2019) Let r be the order at 0 of the resultant of A(x,y) and $\frac{\partial A}{\partial y}(x,y)$. Then the forward and reverse reading complexity of \mathbf{a} are at most $q^{(h+1)d+1+r}$. In particular, $\operatorname{comp}_q(\mathbf{a}) \leq q^{(3h+1)d-h+1}$.

The interpretation of the genus g

"The genus g of y will be the genus of the normalization of the projective closure of the affine plane curve defined by the minimal polynomial of y."

Definition (via Riemann-Roch)

The genus is $g := \dim(V_D) - \deg(D) + 1$ for any effective divisor D.

Theorem (Bridy, 2016) Let $f(x) = \sum a_n x^n \in \mathbb{F}_q[[x]]$ be algebraic over $\mathbb{F}_p(x)$, annihilated by A(x, y) of degree d, height h and genus g The forward and reverse reading complexity of (a_n) is at most $q^{h+2d+g-1}$.

Theorem (Beelen 2009) Let \mathcal{P} be the Newton polygon of A(x, y), and let g_A be the number of integral points in the interior of \mathcal{P} . If A(x, y) is irreducible over \mathbb{F}_q , then $g \leq g_A$.

We can formulate similar bounds to Bridy's using g_A instead of g.

Theorem (Bridy) If d = 1, then for every prime power q and every positive integer $h \ge 1$ there exists a polynomial A(x, y) whose root has a q-kernel with at least q^h elements.

Open question If $d \ge 2$, are these bounds tight?

Open question

Can one easily bound the orbit of $\{\Lambda_0^n(f) : n \ge 0\}$?

The strengths and limits of Furstenberg's method Strengths:

- Extension to functions of several variables over any field,
- Extension to bounding (automaton) complexity of integer sequences a mod p^α, for almost all p and any diagonal a.

Theorem (Denef-Lipshitz, 1987) If $f(x) = \sum_{n\geq 0} a_n x^n \in \mathbb{Z}_p[[x]]$ is algebraic over $\mathbb{Z}_p(x)$, then a mod p^{α} is p-automatic for any $\alpha \in \mathbb{N}$.

Limits:

Example Let $z = \sum_{n \ge 0} T_n x^n$ be the generating function of the sequence of central trinomial coefficients. It satisfies

$$P(x,z) = (x+1)(3x-1)z^2 + 1 = 0.$$

For every $\alpha \in \mathbb{N}$ $(T_n \mod 2^{\alpha})_{n \geq 0}$ is 2-automatic. However $P(x, y) \mod 2$ is not irreducible, so no separation of roots is possible and we cannot apply Furstenberg's theorem to compute $(T_n \mod 2^{\alpha})_{n \geq 0}$. Are there any efficient techniques to do this?