A quantitative version of Christol's theorem

Reem Yassawi
Université Claude Bernard Lyon 1, France

June 29, 2019

Automatic sequences

Definition

A sequence $\left(a_{n}\right)_{n \geq 0}$ of elements in \mathcal{A} is k-automatic if there is a $\operatorname{DFAO}\left(\mathcal{S}, \Sigma_{k}, \delta, s_{0}, \mathcal{A}, \omega\right)$ such that $a_{n}=\omega\left(\delta\left(s_{0}, n_{\ell} \cdots n_{1} n_{0}\right)\right)$ for all $n \geq 0$, where $n_{\ell} \cdots n_{1} n_{0}$ is the standard base- k representation of n, fed in reverse reading.

Example (Apéry numbers mod 16)

The 2-automatic sequence produced by this automaton is

$$
\left(a_{n}\right)_{n \geq 0}=1,5,9,5,9,13 \ldots
$$

Theorem (Christol 1979) Let $S \subset \mathbb{N}$ and let $a_{n}=1$ if $n \in S$, $a_{n}=0$ otherwise. Then $\left(a_{n}\right)_{n \geq 0}$ is p-automatic if and only if $\sum_{n \in S} x^{n}$ is algebraic over $\mathbb{F}_{p}(x)$.

Theorem (Christol-Kamae-Mendès France-Rauzy 1980) Let $\left(a_{n}\right)_{n \geq 0}$ be a sequence in \mathbb{F}_{q}. Then $\left(a_{n}\right)_{n \geq 0}$ is p-automatic if and only if $\sum_{n \geq 0} a_{n} x^{n}$ is algebraic over $\mathbb{F}_{q}(x)$.

Definition

Let $\mathbf{a}=\left(a_{n}\right)_{n \geq 0}$ be a p-automatic sequence. The reverse (direct) reading complexity of \mathbf{a}, denoted $\operatorname{comp}_{q}(\mathbf{a})\left(\operatorname{comp}_{q}(\mathbf{a})\right)$, is the size of the minimal automaton generating $\mathbf{a}=\left(a_{n}\right)_{n \geq 0}$ in reverse (direct) reading.
Question: If $A(x, y)$ has height h and degree d, what is an upper limit for $\operatorname{comp}_{q}(\mathbf{a})$ or $\operatorname{comp}_{q}(\mathbf{a})$, in terms of d and h ?

Theorem (Christol, quantitative) If $f(x)=\sum_{n \geq 0} a_{n} x^{n}$ is annihilated by $A(x, y)$ of height h and degree d, then $\operatorname{comp}_{q}(\mathbf{a})$

1. can be made explicit
(Harase, 88, 89)
2. is at most $q^{q d\left(h\left(2 d^{2}-2 d+1\right)+C(q)\right)}$.
(Fresnel, Koskas, de Mathan, 2000.)
3. is at most $q^{d^{4} h^{2} q^{5 d}}$,
is at most q^{A}, where $A=A(h, d)$.
(Adamczewski, Bell, 2012, 2013.)
4. is at most $q^{h d}(1+o(1))$ for large values of q, d or h. (Bridy, 2016.)
5. is at most $q^{(h+1) d+1}(1+o(1))$ for large values of q, d, or h. (Adamczewski, Y, 2019.)

The tools: The Cartier operators

Let $\ell \in\{0,1, \ldots, q-1\}$. The Cartier operator $\Lambda_{\ell}: \mathbb{F}_{q}[[x]] \rightarrow \mathbb{F}_{q}[[x]]$ is the map defined by

$$
\Lambda_{\ell}\left(\sum_{n \geq 0} a_{n} x^{n}\right):=\sum_{n \geq 0} a_{q n+\ell} x^{n}
$$

Let Ω_{1} denote the monoid generated by these operators under composition.
We call $\Omega_{1}(f)$ the q-kernel of \mathbf{a}.
Theorem (Eilenberg) The sequence $\mathbf{a}=\left(a_{n}\right)_{n \geq 0}$ is q-automatic if and only if it has a finite q-kernel. Moreover, $\left|\Omega_{1}(f)\right|=\operatorname{comp}_{q}(\mathbf{a})$.

Labelling a minimal automaton for a with $\Omega_{1}(f)$

Proof of "algebraic implies automatic" in CKMR, 1980

Input: $A(x, y) \in \mathbb{F}_{q}[x, y]$, degree d, height h, with $A(x, f(x))=0$. Strategy: Find an \mathbb{F}_{q}-vector space V of finite dimension which contains $f(x)$, such that $\Omega_{1}(V) \subset V$.
Tool: Use an Ore polynomial to define V :

$$
A_{0}(x) f(x)=\sum_{i=1}^{d} A_{i}(x)(f(x))^{q^{i}}
$$

Consider

$$
V=\left\{\sum_{i=1}^{d} C_{i}(x) f^{q^{i}}: \operatorname{deg}\left(C_{i}(x)\right) \leq N\right\}
$$

then $\Omega_{1}(V) \subset V$, and $\operatorname{dim}_{\mathbb{F}_{q}}(V) \leq d N$, so $\operatorname{comp}_{q}(\mathbf{a}) \leq q^{d N}$. Problem: N is exponential in q.

Speyer's proof of Christol's theorem

Input: $A(x, y) \in \mathbb{F}_{q}[x, y]$, degree d, height h, with $A(x, f(x))=0$. Strategy: Find an \mathbb{F}_{q}-vector space V of finite dimension which "contains" $f(x)$, such that $\tilde{\Omega}_{1}(V) \subset V$.
Tool: Use the Riemann-Roch theorem to find vector spaces V which are $\tilde{\Omega}_{1}$ invariant.
Consider the variety $\mathcal{V}_{A}=\left\{(x, y) \in \mathbb{P}_{q} \times \mathbb{P}_{q}: A(x, y)=0\right\}$, where we assume that the curve defined by $A(x, y)=0$ is projective and nonsingular.
Let K_{A} be \mathcal{V}_{A} 's function field, and let
$\mathcal{K}_{A}=\left\{g(x) d x: g(x) \in K_{A}, x\right.$ is a separating variable, i.e. $\left.x \notin K_{A}^{p}\right\}$.
Theorem (Riemann-Roch) Given an effective divisor D,

$$
V_{D}:=\left\{f(x) d x \in \mathcal{K}_{A}: \nu_{P}(f(x) d x) \geq-D_{P}\right\}
$$

is a vector space of dimension $\operatorname{deg}(D)+g-1$ over \mathbb{F}_{p}.

Bridy's quantification of Speyer's proof

The Cartier operator $\tilde{\Lambda}_{p-1}: \mathcal{K}_{A} \rightarrow \mathcal{K}_{A}$ is defined by

$$
\tilde{\Lambda}_{p-1}\left(\sum_{n} a_{n} x^{n} d x\right):=\sum_{n=0}^{\infty} a_{n p+p-1}^{1 / p} x^{n} d x
$$

and it captures where $f d x$ will have residues.
Theorem (Bridy, 2016) Let D be the divisor generated by $f(x) d x$. Then

$$
\tilde{\Omega}_{1}\left(V_{D}\right) \subset V_{D},
$$

and V_{D} has \mathbb{F}_{q}-dimension $h+3 d+g-1 \leq h d+2 d=(h+2) d$.
Theorem (Bridy, 2016) There exist nested vector spaces $W \subset V$, of \mathbb{F}_{q}-dimension $h d$ and $(h+2) d$, such that $\Omega_{1}(f) \subset V$ and $\left|\Omega_{1}(f) \backslash W\right|=o(1) q^{h d}$. Thus

$$
\left|\operatorname{comp}_{q}(\mathbf{a})\right| \leq q^{h d}(1+o(1))
$$

Bridy's and our proof in pictures

Christol's first proof of his theorem (1979)

Theorem (Furstenberg, 1967) Let κ be a field and let $A(x, y) \in \kappa[x, y]$. Let $f(x) \in x \kappa[[x]]$ be a root of $A(x, y)$. If $\frac{\partial A}{\partial y}(0,0) \neq 0$ then

$$
f(x)=\Delta\left(\frac{y \frac{\partial A}{\partial y}(x y, y)}{y^{-1} A(x y, y)}\right) .
$$

$$
\begin{aligned}
\Lambda_{\ell}(f) & =\Lambda_{\ell}\left(\Delta\left(\frac{y \frac{\partial A}{\partial y}(x y, y)}{y^{-1} A(x y, y)}\right)\right)=\Delta\left(\Lambda_{\ell, \ell}\left(\frac{y \frac{\partial A}{\partial y}(x y, y)}{y^{-1} A(x y, y)}\right)\right) \\
& =\Delta\left(\frac{\Lambda_{\ell, \ell}\left(y \frac{\partial A}{\partial y}(x y, y) y^{1-q} A(x y, y)^{q-1}\right)}{y^{-1} A(x y, y)}\right)
\end{aligned}
$$

Finishing Christol's proof in the nonsingular case

$$
\Lambda_{\ell}(f)=\Delta\left(\frac{\Lambda_{\ell, \ell}\left(y \frac{\partial A}{\partial y}(x y, y) y^{1-q} A(x y, y)^{q-1}\right)}{y^{-1} A(x y, y)}\right)
$$

hence if $A(x, y)$ is nonsingular at the origin and $A(0,0)=0$,

$$
V:=\operatorname{span}_{\mathbb{F}_{q}}\left\{\left(\frac{(x y)^{i} y^{j}}{y^{-1} A(x y, y)}\right): 0 \leq i \leq h, 0 \leq j \leq d\right\}
$$

is $\Lambda_{\ell, \ell}$-invariant and $\Omega_{1}(f) \subset \Delta(V)$. So $\operatorname{comp}_{q}(\mathbf{a}) \leq q^{(h+1)(d+1)}$.
With a tiny bit more care we have:
Theorem (Adamczewski-Y) If $f(x)=\sum_{n \geq 0} a_{n} x^{n}$ is annihilated by $P(x, y)$, with $\frac{\partial A}{\partial y}(0,0) \neq 0$ and $A(0,0)=0$, then
$\operatorname{comp}_{q}(\mathbf{a}) \leq 1+q^{(h+1) d}$.

Finishing Christol's proof in the singular case

If $A(x, y)$ is singular at the origin, let r be the order at 0 of the resultant of $A(x, y)$ and $\frac{\partial A}{\partial y}(x, y)$. We can explicitly define polynomials $M(x, y)$, such that after a little $o(1) q^{h d}$ trip, the Cartier operators applied to f land in $\Delta(V)$, where
$V:=\operatorname{span}_{\mathbb{F}_{q}}\left\{\frac{(x y)^{i} M(x y, y)^{j}}{y^{-1} A(x y, y)}: r-1 \leq i \leq h+r, 0 \leq j \leq d-1\right\}$.
Theorem (Adamczewski-Y) Let $f(x)=\sum_{n \geq 0} a_{n} x^{n} \in \mathbb{F}_{q}[[x]]$ be an algebraic power series of degree d and height h. Then

$$
\operatorname{comp}_{q}(\mathbf{a}) \leq(1+o(1)) q^{(h+1) d+1}
$$

where the $o(1)$ term tends to 0 for large values of any of q, h, or d.

Implications for the size of direct reading automata

Let $f(x)=\sum a_{n} x^{n} \in \mathbb{F}_{q}[[x]]$ be algebraic over $\mathbb{F}_{q}(x)$, annihilated by $A(x, y)$ of degree d and height h.
Theorem (Bridy, 2016) The forward and reverse reading complexity of a are at most $q^{(h+1) d}$.

Theorem (Adamczewski, $\mathrm{Y}, 2019$) Let r be the order at 0 of the resultant of $A(x, y)$ and $\frac{\partial A}{\partial y}(x, y)$. Then the forward and reverse reading complexity of a are at most $q^{(h+1) d+1+r}$. In particular, $\operatorname{comp}_{q}(\mathbf{a}) \leq q^{(3 h+1) d-h+1}$.

The interpretation of the genus g

"The genus g of y will be the genus of the normalization of the projective closure of the affine plane curve defined by the minimal polynomial of y."

Definition (via Riemann-Roch)
The genus is $g:=\operatorname{dim}\left(V_{D}\right)-\operatorname{deg}(D)+1$ for any effective divisor D.

Theorem (Bridy, 2016) Let $f(x)=\sum a_{n} x^{n} \in \mathbb{F}_{q}[[x]]$ be algebraic over $\mathbb{F}_{p}(x)$, annihilated by $A(x, y)$ of degree d, height h and genus g The forward and reverse reading complexity of $\left(a_{n}\right)$ is at most $q^{h+2 d+g-1}$.

Theorem (Beelen 2009) Let \mathcal{P} be the Newton polygon of $A(x, y)$, and let g_{A} be the number of integral points in the interior of \mathcal{P}. If $A(x, y)$ is irreducible over \mathbb{F}_{q}, then $g \leq g_{A}$.

We can formulate similar bounds to Bridy's using g_{A} instead of g.

Tightness of bounds?

Theorem (Bridy) If $d=1$, then for every prime power q and every positive integer $h \geq 1$ there exists a polynomial $A(x, y)$ whose root has a q-kernel with at least q^{h} elements.

Open question
If $d \geq 2$, are these bounds tight?
Open question
Can one easily bound the orbit of $\left\{\Lambda_{0}^{n}(f): n \geq 0\right\}$?

The strengths and limits of Furstenberg's method Strengths:

- Extension to functions of several variables over any field,
- Extension to bounding (automaton) complexity of integer sequences a $\bmod p^{\alpha}$, for almost all p and any diagonal a.
Theorem (Denef-Lipshitz, 1987) If $f(x)=\sum_{n \geq 0} a_{n} x^{n} \in \mathbb{Z}_{p}[[x]]$ is algebraic over $\mathbb{Z}_{p}(x)$, then a $\bmod p^{\alpha}$ is p-automatic for any $\alpha \in \mathbb{N}$.

Limits:
Example Let $z=\sum_{n \geq 0} T_{n} x^{n}$ be the generating function of the sequence of central trinomial coefficients. It satisfies

$$
P(x, z)=(x+1)(3 x-1) z^{2}+1=0 .
$$

For every $\alpha \in \mathbb{N}\left(T_{n} \bmod 2^{\alpha}\right)_{n \geq 0}$ is 2-automatic. However $P(x, y) \bmod 2$ is not irreducible, so no separation of roots is possible and we cannot apply Furstenberg's theorem to compute $\left(T_{n} \bmod 2^{\alpha}\right)_{n \geq 0}$. Are there any efficient techniques to do this?

