Introductory Multivariable Analytic Combinatorics

Marni Mishna

Department of Mathematics Simon Fraser University Burnaby Canada

EFI 2019 • Anglet, France

A Course on Analytic Combinatorics

Objectives

Develop a combinatorial understanding of various function classes, esp. algebraic, and D-finite

Examine singularities of multivariable combinatorial generating functions and understand the relationship between geometry and the coefficient asymptotics.

Organization

- I. Combinatorial Functional Equations and Taxonomy
- II. Singularities and Critical Points
- III. Diagonal Asymptotics

I. Combinatorial Functional Equations

Combinatorial Classes

C(z) is the ordinary generating function (OGF) for \mathcal{C}

Objectives

- Enumerate objects exactly or asymptotically $c_n = ?$
- Understand the large scale behaviour of the objects in a class
- Interpret functional equations combinatorially
- Answer the question: Under which conditions does the OGF of a combinatorial class satisfy a linear ODE with polynomial coefficients? D-finite/ Holonomic/ G-functions

Everything is non-holonomic unless it is holonomic by design. Flajolet, Gerhold and Salvy

Combinatorial Calculus

	C	Notes	$C(z) = \sum z^{ \gamma }$
Epsilon	$\{\epsilon\}$	$ \epsilon = 0$	1
Atom	{0}	$ \circ = 1$	Ζ
Disjoint Union	$\mathcal{A} + \mathcal{B}$	$\gamma imes\epsilon_{\mathcal{A}}$, $\gamma imes\epsilon_{\mathbb{B}}$	A(z) + B(z)
Cartesian Product	$\mathcal{A}\times \mathcal{B}$	$(lpha,eta)$, $lpha\in\mathcal{A}$, $eta\in\mathfrak{B}$	A(z)B(z)
Power	\mathcal{A}^k	$(lpha_1,\ldots,lpha_k), lpha_i \in \mathcal{A}$	$A(z)^k$
Sequence	$Seq(\mathcal{A}) = \mathcal{A}^*$	$\epsilon + \mathcal{A} + \mathcal{A}^2 + \mathcal{A}^3 + \dots$	$\frac{1}{1-A(z)}$

Binary Words { ϵ , \circ , \bullet , $\circ\circ$, $\circ\circ$, $\bullet\circ$, $\bullet\circ$, $\circ\circ\circ$, \cdots } { \circ } { \bullet } { \bullet } $A = {<math>\circ$, \bullet } $C = A^*$ $\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$ $z \quad z \qquad A(z) = 2z \qquad C(z) = \frac{1}{1-A(z)}$ $\implies C(z) = \frac{1}{1-2z}$

Combinatorial Calculus

	С	Notes	$C(z) = \sum z^{ \gamma }$		
Epsilon Atom	$ \begin{cases} \epsilon \\ \{ \circ \} \end{cases} $	$\begin{aligned} \epsilon &= 0\\ \circ &= 1 \end{aligned}$	1 z		
Disjoint Union Cartesian Product Power Sequence	$ \begin{array}{l} \mathcal{A} + \mathcal{B} \\ \mathcal{A} \times \mathcal{B} \\ \mathcal{A}^{k} \\ \mathrm{Seq}(\mathcal{A}) = \mathcal{A}^{*} \end{array} $	$egin{aligned} & \gamma imes \epsilon_{\mathcal{A}}, \gamma imes \epsilon_{\mathcal{B}} \ & (lpha, eta), lpha \in \mathcal{A}, eta \in \mathcal{B} \ & (lpha_1, \dots, lpha_k), lpha_i \in \mathcal{A} \ & \epsilon + \mathcal{A} + \mathcal{A}^2 + \mathcal{A}^3 + \dots \end{aligned}$	$A(z) + B(z)$ $A(z)B(z)$ $A(z)^{k}$ $\frac{1}{1-A(z)}$		
Binary Trees { \Box , \land , \land , \land , \land , \land , \land , \Box					
		\Rightarrow	$B(z) = \frac{1 - \sqrt{1 - 4z}}{2z}$		

Specifications

Generically we **specify** a combinatorial class by a set of combinatorial equations (like we have just seen):

$$C_{1} = \Phi_{1}(\mathcal{Z}, C_{1}, \dots, C_{r})$$

$$\vdots$$

$$C_{r} = \Phi_{r}(\mathcal{Z}, C_{1}, \dots, C_{r}).$$
(1)

.... and deduce a system of functional equations satisfied by the generating functions:

$$C_{1}(z) = \Phi_{1}(z, C_{1}(z), \dots, C_{r}(z))$$

$$\vdots$$

$$C_{r}(z) = \Phi_{r}(z, C_{1}(z), \dots, C_{r}(z)).$$
(2)

Cyclic dependencies change the nature of the generating function.

Acyclic Dependencies: S-regular classes

Combinatorial classes specified using $+, \times, *$, Atoms, and Epsilons with **no** cyclic dependencies are **S-regular classes.**

 $\mathcal{L} = \operatorname{Seq}(\{0\} + (\{1\} \times \operatorname{Seq}(\{0\} \times \operatorname{Seq}(\{1\}) \times \{0\}) \times \{1\}))$ = $(0 + (1(01^*0)^*1))^* = \{\epsilon, 0, 00, 11, 000, 011, 1001, 10101, \dots\}$

$$L(z) = \frac{1}{1 - \left(z + z\frac{1}{1 - z\frac{1}{1 - z}z}\right)}$$

Theorem

The generating function of an S-regular class is a rational function.

Remark: Not all rational functions Taylor series in $\mathbb{N}[[z]]$ arise this way. (\exists singularity criteria)

Cyclic Dependencies: Algebraic Classes

Well defined combinatorial classes specified using $+, \times$, Atoms, and Epsilons (using possibly cyclic dependencies) are **algebraic classes**.

 $\mathcal{B} = \Box + \bullet \times \mathcal{B} \times \mathcal{B}$

Theorem

The generating function of an algebraic class is an **algebraic** function.

Remark: If a class has a transcendent OGF, it is not an algebraic class. Remark: Not all algebraic functions with series in $\mathbb{N}[[z]]$ arise this way. (\exists asymptotic criteria)

Derivation Tree

The history of rules expanded is encoded in derivation tree. We identify derivation trees and elements

Motzkin Paths $\mathcal M$

Walks with steps $\{\nearrow,\searrow,\rightarrow\}$ confined to the upper half plane.

$$\mathcal{M} \equiv \epsilon_{+} \rightarrow \mathcal{M}_{+} \nearrow \mathcal{M} \searrow \mathcal{M}_{\cdot}$$
$$\xrightarrow{\nearrow} \searrow \in \mathcal{M}$$

Combinatorial Parameters

A **parameter** of a class is a map $\chi : \mathcal{C} \to \mathbb{Z}$ e.g. $\# \to$ steps ; # leaves in a tree ; end height of a walk

$$C(u,z) := \sum_{\gamma \in \mathcal{C}} u^{\chi(\gamma)} x^{|\gamma|} = \sum_{n \ge 0} \left(\sum_{k \in \mathbb{Z}} c_{k,n} u^k \right) z^n.$$

 $c_{k,n} = \#$ objects of size *n* with parameter value *k*. $C(u, z) \in \mathbb{N}[u, u^{-1}][[z]]$ Power series with Laurent polynomial coefficients

Example

$$\chi(w) = |w|_{\circ} = \# \text{ os a word in } \{\circ, \bullet\}^* \colon \chi(\circ \bullet \circ \circ) = 2$$
$$B(u, z) = 1 + (u+1)z + (u^2 + 2u + 1)z^2 + (u^3 + 3u^2 + 3u + 1)z^3 + \dots$$
$$B(u, z) = \left(\frac{1}{1 - (z + uz)}\right). \tag{3}$$

Inherited parameters

The parameter χ is inherited from ξ and ζ if, and only if \ldots

 $\mathfrak{C}=\mathcal{A}+\mathfrak{B}$

$$\chi(\gamma) = \begin{cases} \xi(\gamma) & \gamma \in \mathcal{A} \\ \zeta(\gamma) & \gamma \in \mathcal{B} \end{cases}$$
$$\implies C(\mathbf{z}) = \mathcal{A}(\mathbf{z}) + \mathcal{B}(\mathbf{z})$$

 $\mathfrak{C}=\mathcal{A}\times\mathfrak{B}$

$$\chi(\alpha,\beta) = \xi(\alpha) + \zeta(\beta).$$
$$\implies C(\mathbf{z}) = A(\mathbf{z})B(\mathbf{z})$$

e.g. $B(u, z) = \left(\frac{1}{1 - (z + uz)}\right)$. Straightforward translation of structural parameters to OGF

Derived Classes

Given a class \mathcal{C} , multidimensional inherited parameter $\chi : \mathcal{C} \to \mathbb{Z}^d$, and vector r, define a derived class of \mathcal{C} as any class

 $\mathcal{C}^{\chi,r} = \bigcup_n \{ \gamma \in \mathcal{C} \mid \chi(\gamma) = (r_1 n, \dots, r_d n), |\gamma| = n \}$

Fixed Value

If r = (0, 0, ..., 0), then $\chi = (0, 0, ..., 0)$: This is the constant term with respect to the non-size variables.

Balanced Subclasses

```
\chi counts occurrences of subobjects; r = (1, 1, ..., 1)
```

After two examples, we consider to how find the generating functions of derived classes.

Balanced word classes

 $\mathcal{L} = \{\text{binary expansions of } n \mid n \equiv 0 \mod 3.\} \quad \text{Size} = \text{length of string}$ $\mathcal{L} = \{\epsilon, \overset{0}{0}, 00, 000, \dots, \overset{3}{11}, 011, 0011, \dots, \overset{6}{110}, 0110, 00110, \dots, \overset{9}{1001}, 01001, \overset{12}{1100}, 01100, \dots, \overset{15}{1111}, 01111, \dots\}$

S-regular specification: $\mathcal{L} = (0 + (1(01^*0)^*1))^*$ Parameter: $\chi(w) = (|w|_0, |w|_1) = (\#0s \text{ in } w, \#1s \text{ in } w)$ Balanced sub-class:

more interesting: $\mathcal{L} \subseteq \{a_1, a_2, \dots, a_d\}^*$ with $\chi_i(w) = \#$ of a_i in w.

Excursions

 $S = \{\uparrow, \downarrow, \leftarrow, \rightarrow\} = \clubsuit$ is a set of steps. Consider walks starting at (0, 0) steps from S. Unrestricted walks are S-regular:

$$\{\uparrow,\downarrow,\leftarrow,\rightarrow\}^*$$

Define parameter $\chi(w)$:= endpoint of w.

Endpoint is an inherited parameter

$$\sum walk_{\mathbb{Z}^2}^{\clubsuit}((0,0) \xrightarrow{n} (k,\ell)) x^k y^{\ell} t^n = \frac{1}{1 - t(x + 1/x + y + 1/y)}$$

Excursions are a derived class

$$\mathcal{E} = \{ w \in \{\uparrow, \downarrow, \leftarrow, \rightarrow\}^* \mid \chi(w) = (0, 0) \}$$

Diagonals

The central diagonal maps series expansions to series expansions. e.g.

$$\Delta: \mathcal{K}[[z_1, z_1^{-1}, \ldots, z_d, z_d^{-1}][[t]] \to \mathcal{K}[[t]].$$

defined as:

$$\Delta F(\mathbf{z}, t) = \Delta \sum_{k \ge 0} \sum_{\mathbf{n} \in \mathbb{Z}^d} f(\mathbf{n}, k) \, \mathbf{z}^{\mathbf{n}} t^k := \sum_{n \ge 0} f(n, n, \dots, n) \, t^n.$$
(4)
$$\Delta (z_1^2 z_2 t + 3 \mathbf{z}_1 \mathbf{z}_2 \mathbf{t} + 7 z_1 z_2 t^2 + 5 \mathbf{z}_1^2 \mathbf{z}_2^2 \mathbf{t}^2) = 3t + 5t^2$$

Defined for any series.

We use diagonals to describe the generating functions of derived classes.

Example: Multinomials

Central diagonal

$$\Delta \frac{1}{1-x-y} = \Delta \sum_{n\geq 0} (x+y)^n = \Delta \sum_{\ell\geq 0} \sum_{k\geq 0} \binom{\ell+k}{k} x^k y^\ell = \sum_{n\geq 0} \binom{2n}{n, n} y^n.$$

Off center diagonals

$$\Delta^{(r,s)}\frac{1}{1-x-y} = \sum_{n\geq 0} \binom{rn+sn}{rn,sn} y^n.$$

This example generalizes naturally to arbitrary dimension, using multinomials:

$$\Delta^{\mathbf{r}} \frac{1}{1-(z_1+\cdots+z_d)} = \sum_{n\geq 0} \binom{n(r_1+\cdots+r_d)}{nr_1,\ldots,nr_d} z_d^n.$$

Balanced word classes

 $\mathcal{L} = \{ \text{binary expansions of } n \mid n \equiv 0 \mod 3. \}$

 $\mathcal{L} = (0 + (1(01^*0)^*1))^*$ Parameter $\chi(w) = (|w|_0, |w|_1) = (\#0s \text{ in } w, \#1s \text{ in } w)$ $\mathcal{L}_{=} = \{w \in \mathcal{L} \mid \#0s = \#1s\}$

$$L(x, y) = \frac{1}{1 - \left(x + \frac{y^2}{1 - \frac{x^2}{1 - \frac{y^2}{1 - y}}\right)} \qquad L_{=}(y) = \Delta L(x, y)$$
$$L_{=}(y) = \Delta \left(1 + x + \dots + y^2 (1 + 2x + 4x^2 + \dots) + y^3 (x^2 + 2x^3 + 5x^4 + \dots) + \dots\right)$$

$$= 1 + 4y^2 + 2y^3 + 36y^4 + \dots$$

(size by half length)

Other subseries extraction as diagonal $F(\mathbf{z}, t)$ with series $\in K[[z_1, z_1^{-1}, \dots, z_d, z_d^{-1}][[t]]:$ $\sum_{k>0} \sum_{n \in \mathbb{Z}^d} f(\mathbf{n}, k) \mathbf{z}^n t^k$

Constant Term

$$CT F(\mathbf{z}, t) = \sum_{n \ge 0} f(0, 0, \dots, 0, n) t^n$$
$$= \Delta F\left(\frac{1}{z_1}, \dots, \frac{1}{z_d}, z_1 z_2 \dots z_d t\right)$$

Positive Series

$$[z_1^{\geq 0} \dots z_k^{\geq 0}] F(\mathbf{x}, t) = \sum_{\mathbf{n} \in \mathbb{N}^d} f(\mathbf{n}, k) \mathbf{z}^{\mathbf{n}} t^k$$
$$= \Delta \left(\frac{F\left(\frac{1}{z_1}, \dots, \frac{1}{z_d}, z_1 z_2 \dots z_d t\right)}{(1 - z_1) \dots (1 - z_k)} \right)$$

Excursions

Excursions: start and end at (0, 0) with steps from $S = \Phi$:

$$\mathcal{E} = \{w \in \{\uparrow,\downarrow,\leftarrow,
ightarrow\}^* \mid \chi(w) = (0,0)\}$$

OGF for excursions:

$$\sum walk_{\mathbb{Z}^2}^{4}((0,0) \xrightarrow{n} (0,0)) t^n = [x^0 y^0] \frac{1}{1 - t(x + 1/x + y + 1/y)}$$
$$= \Delta \frac{1}{1 - txy(1/x + x + 1/y + y))}$$

The set of combinatorial classes with OGF a diagonal of \mathbb{N} -rational is smaller than you'd like. (does not include Catalan!) Differences of these classes are a wider class of series.

Walks confined to a quadrant - Reflection Principle

$$\sum_{n\geq 0} \operatorname{walk}_{\mathbb{N}^2}^{\textcircled{1}}((0,0) \xrightarrow{n} (0,0)) t^n$$

$$= [x^{1}y^{1}]\frac{xy - x/y + (xy)^{-1} + y/x}{(1 - t(x + 1/x + y + 1/y))}$$
$$= CT \frac{(x - \frac{1}{x})(y - \frac{1}{y})}{xy(1 - t(x + 1/x + y + 1/y))}$$
$$= \Delta \frac{xy(x - \frac{1}{x})(y - \frac{1}{y})}{1 - txy(x + 1/x + y + 1/y)}$$
$$= \Delta \frac{(x^{2} - 1)(y^{2} - 1)}{1 - t(x^{2}y + y + xy^{2} + x)}.$$

Diagonals and combinatorial generating functions

- Univariate algebraic functions are diagonals of bivariate rationals.
- D-finite functions
 - Algebraic functions are D-finite
 - Diagonals of D-finite functions are D-finite
 - OGFs of derived subclasses of algebraic and S-regular
 - Reflection principle walks in Weyl chambers (from representation theory)

Lingering questions

Are combinatorial D-finite functions always diagonals? Are D-finite classes always (in bijection with) a derived class of an algebraic or regular? algebraic combination of derived classes?

Taxonomy of Generating Functions

Classic results of great utility to the combinatorialist

- Nature and type of singularities for series solutions of different equations types
- Behaviour near the singularities
- Asymptotic form of solutions for algebraic and linear ODE equations

Results on series with positive coefficients (Pringsheim, Polya Carlson, Fatou,...)
 F(z) converges inside the unit disc ⇒ it is a rational function or transcendental over Q(z).

Transcendency

Transcendental OGF \implies class has no algebraic specification.

Trancendancy criterion

$$[z^n]F(z) \sim C\mu^n n^s$$
, $s \notin \mathbb{Q} \setminus \{-1, -2, \dots\}$

$$\mathcal{C} = \{ u \in \{a, b, c\}^* \mid |u|_a \neq |u|_b \text{ or } |u|_a \neq |u|_c \}$$

$$\{a, b, c\}^* \setminus \mathcal{C} = \{u \in \{a, b, c\} \mid |u|_a = |u|_b = |u|_c\}$$

$$3^n - c_n = \begin{pmatrix} 3n \\ n, n, n \end{pmatrix}$$

$$\sum_{\substack{rational}} 3^n z^n - \sum_{rational} c_n z^n = \sum_{\substack{rational\\ rational}} \begin{pmatrix} 3n \\ n, n, n \end{pmatrix} z^n$$

$$\xrightarrow{\sim C \ 27^n n^{-1}}_{transcendental} \implies \sum_{rational} c_n z^n$$

$$\implies \sum_{rational} c_n z^n \text{ transcendental}$$

Conclusion

- Dictionary between combinatorial specification and OGF functional equations
- 3 families of combinatorial classes: S-regular, algebraic, derived subclasses
- Use results on the nature of solutions to help sort objects and make effective computation
- Diagonal operator is used to describe many combinatorial classes

$$\Delta F(\mathbf{z}, t) = \Delta \sum_{k \ge 0} \sum_{\mathbf{n} \in \mathbb{Z}^d} f(\mathbf{n}, k) \, \mathbf{z}^n t^k := \sum_{n \ge 0} f(n, n, \dots, n) \, t^n.$$

- Ohristol's Conjecture: Every G-series is a diagonal of a rational function
- Next: Given a multivariable rational function, determine the coefficient asymptotics of a diagonal.

Bibliography

- Analytic Combinatorics, Flajolet Sedgewick
- Random Walk in a Weyl Chamber, Ira M. Gessel and Doron Zeilberger Proceedings of the American Mathematical Society Vol. 115, No. 1 (May, 1992), pp. 27-31
- R. Stanley. Enumerative Combinatorics, volume 2. Cambridge University Press, 1999.
- Analytic models and ambiguity of context-free languages Philippe Flajolet, Theoretical Computer Science Volume 49, Issues 23, 1987, Pages 283-309

II. Singularities and Critical Points

Objective

Systematic methods to determine asymptotic estimates for the number of objects of size n in combinatorial class C.

Understand the singularity structure of its OGF C(z)

Part II: Focus on diagonals of multivariable rationals (e.g. OGFs of derived classes)

$$\Delta \frac{G(\mathbf{z},t)}{H(\mathbf{z},t)} = \Delta \sum_{k\geq 0} \sum_{\mathbf{n}\in\mathbb{Z}^d} f(\mathbf{n},k) \, \mathbf{z}^{\mathbf{n}} t^k := \sum_{n\geq 0} f(n,n,\ldots,n) \, t^n.$$

Analytic Strategy

- Relate the singularities of $\frac{G(z,t)}{H(z,t)}$ and $\Delta \frac{G(z,t)}{H(z,t)}$.
- Study the geometry of the variety of points annihilating *H*.

Univariate Singularity

$$F(z) = \frac{1}{(1-z^3)(1-4z)^2(1-5z^4)}$$
$$1+8z+54z^2+304z^3+1599z^4+7928z^5+O(z^6)$$

Poles of F(z)

Value of |F(z)|

Branch Point Singularity

$$C(z) = \frac{1 - \sqrt{1 - 4z}}{2z} \quad 1 + z + 2z^2 + 5z^3 + 14z^4 + 42z^5 + 132z^6 + O(z^7)$$

|C(z)|

 $\operatorname{Im} C(z)$

Exponential growth and the radius of convergence

$$F(z) = \sum_{n \ge 0} f_n z^n \in \mathbb{R}_{>0}[[z]]$$

 \implies there is a positive real valued singular point $\rho \in \mathbb{R}_{>0}$ on the circle of convergence. (Pringshheim)

Exponential growth

 $\mu := \limsup_{n \to \infty} f_n^{1/n}$ " $f_n \sim \kappa \mu^n n^{\alpha}$ "

 $ROC(F(z)) = \rho \implies \mu = \rho^{-1}$

Convergence and the Exponential Growth

The radius of convergence $F(z) = \rho$ \implies exponential growth of $[z^n]F(z) = \rho^{-1}$.

$$\frac{1 - \sqrt{1 - 4z}}{2z}$$
$$\lim_{n \to \infty} c_n^{1/n} = 4$$
The first principle of coefficient asymptotics

The **location** of singularities of an analytic function determines the **exponential order** of growth of its Taylor coefficients.

We connect the boundary of convergence and exponential growth.

Preview: An analogy

Here is a rough idea of what the multivariable case looks like.

Univariate Rationals

$$F(z) = \frac{G(z)}{H(z)} = \sum f_n z^n$$
$$f_n \sim C \mu^n n^{\alpha}$$

dominant singularity: $\rho \in \mathbb{C}$ on circle of convergence satisfying $H(\rho) = 0$

$$\mu = |\rho|^{-1}$$

Multivariable Rationals

$$\Delta \frac{G(z_1,\ldots,z_d)}{H(z_1,\ldots,z_d)} = \sum f_{nn\ldots n} z_d^n$$

$$f_{nn...n} \sim C \mu^n n^{\alpha}$$

minimal critical point: (ρ_1, \ldots, ρ_d) on the boundary of convergence satisfying $H(\rho_1, \ldots, \rho_d) = 0$ + other equations.

$$\mu = |\rho_1 \dots \rho_d|^{-1}$$

Multivariable Series

Convergence of multivariable series

• View the series as an iterated sum.

$$\sum_{n_d} \left(\dots \left(\sum_{n_1} a(n_1, \dots, n_d) z_1^{n_1} \right) \dots \right) z_d^{n_d}$$

- The domain of convergence, denoted D ⊆ C^d, is the interior of the set of points where the series converges absolutely.
- The polydisk of a point z is the domain

$$D(\mathbf{z}) = \{\mathbf{z}' \in \mathbb{C}^d : |z_i'| \le |z_i|, 1 \le i \le d\}.$$

• The torus associated to a point is

$$\mathcal{T}(\mathbf{z}) = \{\mathbf{z}' \in \mathbb{C}^d : |z_i'| = |z_i|, 1 \le i \le d\}.$$

• A domain of convergence is multicircular.

$$\mathbf{z} = (z_1, \ldots, z_d) \in \mathcal{D} \implies T(\mathbf{z}) \subseteq \mathcal{D} \implies (\omega_1 z_1, \ldots, \omega_d z_d) \in \mathcal{D}, \quad |\omega_k| = 1$$

What is a singularity of G/H?

The set of singularities of G(z)/H(z) is the algebraic variety

 $\mathcal{V} := \{ \mathbf{z} : H(\mathbf{z}) = 0 \}.$

minimal points (working definition)

The set of minimal points of a series expansion of F is the set of singular points on the boundary of convergence.

 $\mathcal{V}\cap\partial\mathcal{D}$

A point **z** is **strictly minimal** if $\mathcal{V} \cap D(\mathbf{z}) = \{\mathbf{z}\}$

Example: 1D

Definitions

The set of minimal points of a series development of F is the set of singular points on the boundary of convergence.

 $\mathcal{V}\cap\partial\mathcal{D}$

A point **z** is strictly minimal if $\mathcal{V} \cap D(\mathbf{z}) = \{\mathbf{z}\}$

$$H(z) = (1 - z^3)(1 - 4z)^2(1 - 5z^4)$$

 $\partial \mathcal{D} = \{z : |z| = 1/4\}, \ \mathcal{V} = \{1/4, 1, w, w^2, (\frac{1}{5})^{1/4}\}$ minimal point: $\mathcal{V} \cap \mathcal{D} = \{1/4\}$, strictly minimal. Example: $F(x, y) = \frac{1}{1-x-y}$

Taylor expansion: $\sum_{k,\ell} \binom{k+\ell}{k} x^k y^\ell$

Convergence at (x, y) $\implies \text{ convergence at } (|x|, |y|) \qquad |y|$ $F(|x|, |y|) = \frac{1}{1 - |x| - |y|} \implies |x| + |y| < 1$ $\partial \mathcal{D} = \{(x, y) \in \mathbb{C}^2 \mid |x| + |y| = 1\}$ $\mathcal{V} = \{(z, 1 - z) \mid z \in \mathbb{C}\}$

Minimal points $\mathcal{V} \cap \partial \mathcal{D}$

 $\{(z, 1-z) \mid |z|+|1-z|=1\} = \{(x, 1-x) \mid x \in \mathbb{R}_{>0}\}$

All strictly minimal.

A first formula for exponential growth for diagonal coefficients

Convergence and exponential growth

Given series $\sum a(\mathbf{n}) \mathbf{z}^{\mathbf{n}}$ and $\mathbf{z} \in \mathcal{D}$,

 $\sum_{\mathbf{n}\in\mathbb{N}^d}a(\mathbf{n})|z_1|^{n_1}|z_2|^{n_2}\ldots|z_d|^{n_d} \text{ is convergent (absolute conv)}.$

 $\implies \sum_{n \in \mathbb{N}} a(n, n, \dots, n) |z_1|^n |z_2|^n \dots |z_d|^n \text{ is convergent (subseries).}$

$$=\sum_{n}a(n,n,\ldots,n)|z_1z_2\ldots z_d|^n$$

 $\implies t = |z_1 z_2 \dots z_d|$ is within the radius of convergence of $\Delta F(\mathbf{z})$.

$$\mu \leq \limsup_{n \to \infty} |a(n, n, \dots, n)|^{1/n} \leq |z_1 z_2 \dots z_d|^{-1} \quad \text{with } \forall \mathbf{z} \in \overline{\mathcal{D}}$$

$$\leq \inf_{(z_1,\ldots,z_d)\in\overline{\mathcal{D}}} |z_1z_2\ldots z_d|^{-1}.$$

Thm: Under conditions of non-triviality, the infimum is reached at a minimal point:

$$\mu = \inf_{z \in \partial \mathcal{D} \cap \mathcal{V}} |z_1 \dots z_d|^{-1}.$$
 (5)

Example: Binomials $F(x, y) = (1 - x - y)^{-1}$

Minimal points: $\partial \mathcal{D} \cap \mathcal{V} = \{(x, 1-x) \in \mathbb{R}^2 : 0 < x < 1\}.$

$$\mu = \limsup_{n \to \infty} a(n, n)^{1/n} = \inf_{(x, y) \in \partial \mathcal{D} \cap \mathcal{V}} |xy|^{-1} = \inf_{x \in \mathbb{R}: 0 \le x \le 1} (x(1-x))^{-1} = 4.$$

We can consider non-central diagonals.

$$\limsup_{n \to \infty} a_{rn\,sn}^{1/n} = \inf_{(x,y) \in \partial \mathcal{D}} |x^r y^s|^{-1} = \inf_{x \in \mathbb{R}} (x^r (1-x)^s)^{-1}.$$

This is minimized at $x = \frac{r}{r+s}$. The exponential growth:

$$\mu = \left(\left(\frac{r}{r+s} \right)^r \left(\frac{s}{r+s} \right)^s \right)^{-1}$$

We got lucky here – we could easily write y in terms of x. What to do in general?

Computing critical points

The height function h

Astuce

We convert the multiplicative minimization to a linear minimization using logarithms.

To minimize $|z_1 \dots z_d|^{-1}$, minimize: $-\log |z_1 \dots z_d| = \underbrace{-\log |z_1| - \dots - \log |z_d|}_{\text{linear in } \log |z_i|}$ Define a function $h: \mathcal{V}^* \to \mathbb{R}$: $v^* = v \setminus \{z: z_1 \dots z_d \neq 0\}$

$$(z_1,\ldots,z_d)\mapsto -\log |z_1|-\cdots-\log |z_d|.$$

The map *h* is smooth \implies minimized at its critical points. When r = (1, ..., 1), the critical points are solutions to the critical point equations:

$$H(\mathbf{z}) = 0$$
, $z_1 \frac{\partial H(\mathbf{z})}{\partial z_1} = z_j \frac{\partial H(\mathbf{z})}{\partial z_j}$, $2 \le j \le d$.

Critical points are potential locations of minimizers of $|z_1 \dots z_d|^{-1}$. In the most straightforward cases it suffices to compare the values of this product and select the critical point that is the global minimizer.

- A critical point is strictly minimal if it is on the boundary of convergence of the series.
- In these generating functions the asymptotics is driven by a finite number of isolated minimal points. Simplest case.

Visualize Critical Points

Critical points of $(1 - x - y)^{-1}$ for r = (1, 1)

Trinomial $(1 - x - y - z)^{-1}$ Critical points $\rho \in \mathcal{V} \cap \partial \mathcal{D}$ $\rho = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$ minimize $h(x, y, z) = -\log |x| - \log |y| - \log |z|$ $h(x, y, z) = 3 \log 3$ $\mu = |\rho_1 \rho_2 \rho_3|^{-1}$ $\lim_{n \to \infty} (\frac{3n}{n, n, n})^{1/n} = 27$

Non-central diagonals

If we want a non-central diagonal, we want to minimize

$$|z_1^{r_1}\ldots z_d^{r_d}|^{-1}$$
 in $\partial \mathcal{D}\cap \mathcal{V}$.

Instead take height function here is

$$(z_1,\ldots,z_d)\mapsto -r_1\log|z_1|-\cdots-r_d\log|z_d|.$$

The equations change. For example, in 2D, diagonal (r, s), solve the equations:

$$H(x, y) = 0, \quad s x \frac{\partial H(x, y)}{\partial x} = r y \frac{\partial H(x, y)}{\partial y}.$$

Critical point depends on the diagonal ray

Summary: To Find Critical Points

Given:
$$G(x, y)/H(x, y) = \sum f_{k,\ell} x^j y^k$$
, irreducible H
 $(r, s) \in \mathbb{R}^2_{>0}$
Determine: $\mu = \limsup_{n \to \infty} f_{rn,sn}^{1/n}$, critical points ρ

Find solutions {ρ} to the (r, s)-critical point equations.
 Hint: Find Gröbner basis of

[H, s*x*diff(H, x)-r*y*diff(H,y)]

- Ensure $T(\rho) \subset \partial \mathcal{D}$
- Set $\mu = \min |\rho_1 \dots \rho_d|^{-1}$ among those solutions with no 0 coordinate.
- We use the set of such ρ to find the sub-exponential growth (tomorrow)
- Nontriviality requirement: ρ to be smooth as a function of (r, s) near where you want it.

Balanced Binary Words

Let $\mathcal{L} =$ Binary words over $\{0, 1\}$ with no run of 1s of length 3.

$$\mathcal{L} = (\epsilon + 1 + 11) \cdot (0 \cdot (\epsilon + 1 + 11))^*$$

Parameter: $\chi(w) = (|w|_0, |w|_1)$

$$\mathcal{L}_{=} = \{ w \in \mathcal{L} \mid \chi(w) = (n, n) \}$$
$$L_{=}(y) = \Delta \frac{1 + x + x^{2}}{1 - y(1 + x + x^{2})}$$

- GB of Critical point equations: $[x^2 1, x + 3y 2]$
- two solutions: (1,1/3) (-1,1)
- $\mu = \min |\rho_1 \dots \rho_d|^{-1} (1, 1/3) \mapsto 3 (-1, 1) \mapsto 1$
- BUT (1, 1) ∈ T(-1, 1) ⇒ (-1, 1) is not a minimal point because (1, 1) outside of domain of convergence.

$$[y^n]L_=(y) \to \kappa 3^n n^{\alpha}$$

Visualize the boundary

Simple Excursions

Let \mathcal{E} be the set of simple excursions in the entire plane, that is walks that start and end at the origin, taking unit steps $\{\uparrow, \downarrow, \leftarrow, \rightarrow\}$

$$e(n) = [x^0 y^0] (x + 1/x + y + 1/y)^n$$

We can deduce:

$$E(z) = \Delta \frac{1}{1 - zxy\left(x + \frac{1}{x} + y + \frac{1}{x}\right)}$$

Any critical point $\rho = (x, y, z)$ will have $z = \frac{1}{xy(x+1/x+y+1/y)}$ from H = 0. Critical points: (1, 1, 1/4), (-1, -1, -1/4)

$$e(2n)^{1/2n} = \inf_{\rho \in \partial \mathcal{D} \cap \mathcal{V}} |xyz|^{-1} = \inf_{0 \le x, y \le 1} |x+1/x+y+1/y| = 4^2$$

Excursions for any finite step set

This phenomena is general. Let S be any weighted finite 2D step set

$$S(x, y) = \sum_{(j,k) \in \mathbb{S}} w(j, k) x^{j} y^{k}$$

$$e(n) = [x^0 y^0] S(x, y)^n$$

We can deduce:

$$E(z) = \Delta \frac{1}{1 - zxyS(1/x, 1/y)}$$

Any critical point $\rho = (x, y, z)$ will have $z = \frac{1}{xyS(1/x, 1/y)}$ from H = 0.

$$\limsup_{n \to \infty} e(n)^{\frac{1}{n}} = \inf_{\rho \in \partial \mathcal{D} \cap \mathcal{V}} |xyz|^{-1} = \inf_{\rho \in \partial \mathcal{D}} |S(1/x, 1/y)|$$

The minimum is found using the critical point eqn.

Suppose H factors nontrivially into squarefree factors:

$$H = H_1 \ldots H_k$$

- CASE A: $H_j(\rho) = 0 \implies H_k(\rho) \neq 0$ for $j \neq k$: OK.
- CASE B: Must decompose V into strata, and find critical points for each stratum independently. **Important to keep track of the co-dimension of the stratum for later.**

Walks in the quarter plane that end anywhere

Let $S = \{ \swarrow, \rightarrow, \downarrow \}$. T = walks start at (0, 0) end anywhere. Using a reflection principle argument:

$$T(z) = \Delta \frac{\left(1 - \frac{y^2}{x} + \frac{y^3}{y^2} - \frac{x^2y^2}{x^3} - \frac{x^2}{y}\right)}{\left(1 - \frac{zxy(1}{x} + \frac{x}{y} + \frac{y}{y})\right)\left(1 - \frac{x}{y}\right)}$$
(6)

Critical points

We divide \mathcal{V}_H into strata and we determine critical points from each of them.

Image of \mathcal{V} under $(x, y, z) \mapsto (|x|, |y|, |z|)$

 Image of \mathcal{V} under $(x, y, z) \mapsto (-\log |x|, -\log |y|, -\log |z|)$

 Stratum
 Critical points
 value of $|xyz|^{-1}$
 S_1 $(w^2, w, w/3)$, $(w, w^2, w^2/3)$ 1/3

 S_{12} S_{23} 1/3

 S_{123} (1, 1, 1/3) 1/3

A lattice path enumeration problem

Let $S = \{ \swarrow, \rightarrow, \downarrow \}$. T = walks start at (0, 0) end anywhere. Using a reflection principle argument:

$$T(z) = \Delta \frac{\left(1 - \frac{y^2}{x} + \frac{y^3}{y^2} - \frac{x^2y^2}{x^3} - \frac{x^2}{y}\right)}{\left(1 - \frac{zy}{1} + \frac{x}{y} + \frac{y}{y}\right)\left(1 - \frac{x}{y}\right)}$$

We conclude: Three critical points:

$$(w, w^2, w^2/3), (w^2, w, w/3), (1, 1, 1/3)$$

(Potential for periodicity..)

Exponential growth: $t_n \sim C3^n n^{\alpha}$. Tomorrow: find C, α .

Determine **how** each contributing critical point modulates the dominant exponential term by a subexponential factor.

Bibliography

Analytic Combinatorics in Several Variables Pemantle and Wilson 2013 III. Diagonal Asymptotics

The problem

Diagonal Asymptotics

Given:

$$F(\mathbf{z}) = G(\mathbf{z})/H(\mathbf{z}) = \sum f(\mathbf{n})\mathbf{z}^{\mathbf{n}}$$

Determine the asymptotics of f(n, n, ..., n) as $n \to \infty$

- Singular Variety $\mathcal{V} = \{ \mathbf{z} \mid H(\mathbf{z}) = 0 \}$
- Minimal Points: $\partial \mathcal{D} \cap \mathcal{V}$
- Critical points minimize: $|\rho_1 \dots \rho_d|^{-1}$ (with value μ , say)
- Minimal critical point ρ contained in both

$$\underbrace{-\log|z_1| - \dots - \log|z_d| = \log \mu}_{\text{a hyperplane}} \quad \rho \in \partial \mathcal{D} \cap \mathcal{V}$$

Balanced Binary Words

Let $\mathcal{L} =$ Binary words over {0, 1} with no run of 1s of length 3.

$$\mathcal{L} = (\epsilon + 1 + 11) \cdot (0 \cdot (\epsilon + 1 + 11))^*$$

Parameter: $\chi(w) = (|w|_0, |w|_1)$

$$\mathcal{L}_{=} = \{ w \in \mathcal{L} \mid \chi(w) = (n, n) \}$$
$$\mathcal{L}_{=}(y) = \Delta \frac{1 + x + x^{2}}{1 - y(1 + x + x^{2})}$$

- GB of Critical point equations: $[x^2 1, x + 3y 2]$
- two solutions: (1,1/3) (-1,1)
- $\mu = \min |\rho_1 \dots \rho_d|^{-1} (1, 1/3) \mapsto 3 \qquad (-1, 1) \mapsto 1$
- BUT (1, 1) ∈ T(-1, 1) ⇒ (-1, 1) is not a minimal point because (1, 1) outside of domain of convergence.

$$[y^n]L_=(y) \to \kappa 3^n n^{\alpha}$$

First Principle of Coefficient Asymptotics

The **location** of singularities of an analytic function determines the **exponential order** of growth of its Taylor coefficients.

We connect the boundary of convergence and exponential growth.

Second Principle of Coefficient Asymptotics

The **nature** of the singularities determines the way the dominant exponential term in coefficients is modulated by a subexponential factor.

Nature = geometry of the singular variety at the critical point.

The problem

Diagonal Asymptotics

Given:

$$F(\mathbf{z}) = G(\mathbf{z})/H(\mathbf{z}) = \sum f(\mathbf{n})\mathbf{z}^{\mathbf{n}}$$

Determine the asymptotics of f(n, n, ..., n) as $n \to \infty$

- Singular Variety $\mathcal{V} = \{\mathbf{z} \mid H(\mathbf{z}) = 0\}$
- Minimal Points: $\partial \mathcal{D} \cap \mathcal{V}$
- Critical points minimize: $|\rho_1 \dots \rho_d|^{-1}$ (with value μ , say)
- Minimal critical point ρ satisfies

$$\underbrace{-\log |\rho_1| - \dots - \log |\rho_d| = \log \mu}_{\text{a hyperplane}} \quad \rho \in \partial \mathcal{D} \cap \mathcal{V}$$

What are the geometries we can handle?

Behaviour at critical point ρ

$$-\log |\rho_1| - \cdots - \log |\rho_d| = \log \mu \quad \rho \in \partial \mathcal{D} \cap \mathcal{V}$$

Smooth Point

THM A (Hörmander)

e.g. excursions

 Transverse Multiple
 THM B (Pemantle and Wilson)

 Point
 Point

e.g. general walks

Arrangement Point Decompose F;THM B

e.g. vector partitions polytope dilation

Univariate Case

Cauchy Integral Formula

The heart of analytic combinatorics.

Theorem

Suppose that F(z) is analytic at the origin, with Taylor series expansion $F(z) = \sum_{n \ge 0} f(n) z^n$. Then for all $n \ge 0$,

$$f(n) = \frac{1}{(2\pi i)} \int_{\gamma} \frac{F(z)}{z^{n+1}} dz$$

(7)

where γ is a counterclockwise circle about the origin sufficiently small that F(z) is analytic in its interior and is continuous on it.

Strategies

- Estimate integral by curvelength × max on curve
- ② Use someone else's estimate.

Transfer Theorem

Theorem

Assume that, with the sole exception of the singularity z = 1, F(z) is analytic in the domain

$$\Omega = \{ z \mid |z| \le 1 + \nu, |\arg(z - 1)| \ge \phi \}$$

for some $\nu > 0$ and $0 < \phi < \pi/2$. Assume further that as z tends to 1 in Ω ,

$$F(z) = (1-z)^{\alpha} \log\left(\frac{1}{1-z}\right)^{\beta} O\left(\left(\log\frac{1}{1-z}\right)^{-1}\right)$$

for some real α and β such that $\alpha \notin \{0, 1, 2, ...\}$. Then

$$[z^n]F(z) = \frac{n^{-\alpha-1}}{\Gamma(-\alpha)} \log^{\beta} n\left(O\left(\log^{-1} n\right)\right).$$

Ref: Flajolet Odlyzko, 1990

Rewrite as a sum of residues

Key Multivariable Theorem

Multidimensional Cauchy Integrals

Theorem

Fix d and let $\mathbf{z} = (z_1, \ldots, z_d)$. Suppose that $F(\mathbf{z}) \in \mathbb{C}(\mathbf{z})$ is analytic at the origin, with Taylor series expansion $F(\mathbf{z}) = \sum_{\mathbf{n} \in \mathbb{N}^d} f(\mathbf{n}) \mathbf{z}^{\mathbf{n}}$ Then for all $n \ge 0$,

$$f(\mathbf{n}) = \frac{1}{(2\pi i)^d} \int_{\mathcal{T}} \frac{F(\mathbf{z})}{(z_1 \dots z_d)^n} \cdot \frac{dz_1 \dots, dz_d}{z_1 \dots z_d},$$

where T is the torus $T(\epsilon) = T(\epsilon_1, \epsilon_2, ..., \epsilon_d)$ has each ϵ_j sufficiently small such that $F(\mathbf{z})$ is analytic in the interior of $D(\epsilon)$, and is analytic on the boundary. Smooth Point Asymptotics

The minimal critical point ρ is a smooth point if $\partial_k H(\rho) \neq 0$ for all k.

Example

The point (1, 1, 1/3) is a smooth critical point for $H(x, y) = 1 - y(1 + x + x^2)$:

Compute $H_x(x, y) = y(1 + 2x),$ $H_y = (1 + x + x^2)$ Verify $H_x(1, 1, 1/3) = 1 \neq 0,$ $H_y(1, 1, 1/3) = 3 \neq 0.$ The strategy is to rewrite Cauchy Integrals as Fourier-Laplace integrals:

$$\int_{\mathcal{N}} A(\mathbf{t}) e^{-\lambda \phi(\mathbf{t})} dt_1 \dots dt_d,$$

with the functions A and ϕ analytic over their domain of integration, and \mathcal{N} is some neighbourhood in \mathbb{R}^d .

As we saw yesterday, often asymptotic estimate for these integrals are known.

Smooth Point: THM A

Suppose $A: \mathbb{C}^d \to \mathbb{C}$ and $\phi: \mathbb{C}^d \to \mathbb{C}$ are both smooth in a neighbourhood \mathbb{N} of **0** and that

- $\phi(0) = 0$
- ϕ has a critical point at $\mathbf{t} = \mathbf{0}$, i.e., that $(\nabla \phi)(\mathbf{0}) = \mathbf{0}$, and that the origin is the only critical point of ϕ in \mathcal{N} ;
- the Hessian matrix \mathcal{H} of ϕ has i, j^{th} entry $\partial_i \partial_j \phi(\mathbf{t})$, and at $\mathbf{t} = \mathbf{0}$ is non-singular;
- the real part of $\phi(\mathbf{t})$ is non-negative on \mathcal{N} .

Then for any integer M > 0 there exist computable constants C_0, \ldots, C_M such that

$$\int_{\mathcal{N}} \mathcal{A}(\mathbf{t}) e^{-n\phi(\mathbf{t})} d\mathbf{t} = \left(\frac{2\pi}{n}\right)^{d/2} \det(\mathcal{H})^{-1/2} \cdot \sum_{k=0}^{M} C_k n^{-k} + O\left(n^{-M-1}\right).$$

 $C_0 = A(\mathbf{0})$ If $A(\mathbf{t})$ vanishes to order L at 0 then $C_0 = \cdots = C_{\lfloor \frac{L}{2} \rfloor} = 0.$ [Hörmander]

Balanced Binary Words with no Runs

We complete the asymptotic analysis of the number of balanced binary words over $\{0, 1\}$ such that no word has a run of 1s of length 3 or longer. The generating function by halflength is

$$\Delta \frac{1 + x + x^2}{1 - y(1 + x + x^2)}.$$

There is a minimal critical point at $\rho = (1, 1/3)$.

Strategy

- Remark $[x^n y^n](1 + x + x^2)(y(1 + x + x^2))^n = [x^n](1 + x + x^2)^{n+1}$
- Write Cauchy Integral in one smaller dimension
- 8 Rewrite as a sum of integrals around the singularities
- For each integral, move the singularity to 0 in a way that converts it to a Fourier-Laplace integral.

Rewriting a Cauchy Integral as Fourier-Laplace Integral

 $[x^n](1 + x + x^2)^{n+1}$

$$\begin{split} [x^n] \mathcal{A}(x) \mathcal{B}(x)^n &= \frac{1}{2\pi i} \int_{|x|=\epsilon} \frac{\mathcal{A}(x) \mathcal{B}(x)^n}{x^{n+1}} \, dx \\ &= \frac{1}{2\pi i} \int_{|x-\rho|=\epsilon} \frac{\mathcal{A}(x) \mathcal{B}(x)^n}{x^{n+1}} \, dx + O((\rho+\epsilon)^{-1}) \\ &= \frac{1}{2\pi i} \int_{\mathcal{N}} \frac{\mathcal{A}(\rho e^{it}) \mathcal{B}(\rho e^{it})^n}{\rho^{n+1} e^{it(n+1)}} i \rho e^{it\rho} dt \\ &= \frac{\rho^{-n} \mathcal{B}(\rho)^n}{2\pi} \int_{\mathcal{N}} \mathcal{A}(\rho e^{it}) \frac{\mathcal{B}(\rho e^{it})^n}{\mathcal{B}(\rho)^n} e^{-it(n+1)} dt \\ &= \frac{\rho^{-n} \mathcal{B}(\rho)^n}{2\pi} \int_{\mathcal{N}} \mathcal{A}(\rho e^{it}) e^{-n\phi(t)} dt \end{split}$$

with $\phi(t) = \log \frac{B(\rho)}{B(\rho e^{it})} + it$. $A : \mathbb{C}^d \to \mathbb{C}$ and $\phi : \mathbb{C}^d \to \mathbb{C}$ are both smooth in a neighbourhood \mathbb{N} of $\mathbf{0}$; ϕ has a critical point at $\mathbf{t} = \mathbf{0}$, the origin is the only critical point of ϕ in \mathbb{N} ;

Balanced Binary Words with no Runs

We complete the asymptotic analysis of the number of balanced binary words over $\{0, 1\}$ such that no word has a run of 1s of length 3 or longer. The generating function by halflength is

$$\Delta \frac{1+x+x^2}{1-y(1+x+x^2)}.$$

There is a minimal critical point at $\rho = (1, 1/3)$.

Strategy

- Remark $[x^n y^n](y(1 + x + x^2))^n = [x^n](1 + x + x^2)^n$
- Write Cauchy Integral in one smaller dimension
- 8 Rewrite as a sum of integrals around the singularities
- For each integral, move the singularity to 0 in a way that converts it to a Fourier-Laplace integral.

How to apply to more general cases

The first step of the computation used

$$H = 1 - yB(x) \implies y = B(x)^{-1}$$
 on \mathcal{V}

If the variety \mathcal{V} is smooth, and if $\partial_{d+1}H(\rho) \neq 0$, then by the implicit function theorem there is a parametrization $z_d = \Psi(z_1, \ldots, z_{d-1})$ that we can similarly use.

We define ϕ and proceed as above:

$$\phi(\mathbf{t}) = \log(\psi(\rho_1 e^{it_1}, \dots, \rho_{d-1} e^{it_{d-1}})) - \log(\rho) + \frac{i}{r_d} (r_1 t_1 + \dots + r_{d-1} t_{d-1}).$$

A prefabricated theorem for 2D

Theorem (Pemantle + Wilson)

Let G(x, y)/H(x, y) be meromorphic and suppose that as $\hat{\mathbf{r}}$ varies in a neighbourhood N of (r, s), there is a smoothly varying, strictly minimal smooth critical point ρ in the direction (r, s). Finally $G(\rho) \neq 0$. Define $\mathbf{z}(r, s)$ as the critical point in the direction (r, s), and define

$$Q(\mathbf{z}(\hat{\mathbf{r}})) := -y^2 H_y^2 x H_x - y H_y x^2 H_x - x^2 y^2 (H_y^2 H_{xx} + H_x^2 H_y y - 2 H_x H_y H_{xy}).$$

If this function is nonzero in a neighbourhood of (rn, sn) then

$$f(rn, sn) \sim \frac{G(\rho) (x^{-r} y^{-s})^n}{\sqrt{2\pi}} \sqrt{\frac{-\rho_2 H_y(\rho)}{n s Q(\rho)}}.$$

Transversal Intersections

Transversal Intersection

Intuitively, two curves have a transversal intersection if the intersection is robust to small perturbations of the curves.

- YES Two non-parallel lines in \mathbb{R}^2
 - NO Two non-parallel lines in \mathbb{R}^3

NO
$$y = x^2$$
 and $y = 0$ at (0,0)

NO Three lines in \mathbb{R}^2

Proposition

Point $\rho \in \mathcal{V}$ is a multiple point if and only if there is a factorization $H = \prod_{j=1}^{N} H_j^{m_j}$ with $\nabla H_j(\rho) \neq 0$ and $H_j(\rho) = 0$. Point ρ is a transverse multiple point of order N if in addition the gradient vectors are linearly independent.

A lattice path enumeration problem

Let $S = \{ \swarrow, \rightarrow, \downarrow \}$. T = walks start at (0, 0) end anywhere. Using a reflection principle argument:

$$T(z) = \Delta \frac{\left(1 - \frac{y^2}{x} + \frac{y^3}{y^2} - \frac{x^2y^2}{x^3} - \frac{x^2}{y}\right)}{\left(1 - \frac{zxy(1}{x} + \frac{x}{y} + \frac{y}{y})\right)(1 - x)(1 - y)}$$

Three critical points:

$$(w, w^2, w^2/3), (w^2, w, w/3), (1, 1, 1/3)$$

The point (1, 1, 1/3) is at the intersection of more than one variety. Is it transversal?

$$\begin{bmatrix} \nabla H_1(1, 1, 1/3) \\ \nabla H_2(1, 1, 1/3) \\ \nabla H_3(1, 1, 1/3) \end{bmatrix} = \begin{bmatrix} -1 & -1 & -3 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}.$$

This matrix of full rank, and so YES (1, 1, 1/3) is a transversal multiple point of order 3.

Image of \mathcal{V} under $(x, y, z) \mapsto (|x|, |y|, |z|)$

Transversal Intersection: THM B

Pemantle and Wilson 2013

Theorem 10.3.3 (complete intersection) Let $F = G / \prod_{j=1}^{d} H_j^{m_j}$ in \mathbf{R}_z with each H_j squarefree and all divisors intersecting transversely at z. Suppose that G is holomorphic in a neighborhood of z and $G(z) \neq 0$. Then

$$\frac{1}{(2\pi i)^d} \int_T z^{-r-1} F(z) \, dz \sim \Phi_z(r)$$

with

$$\Phi_{z}(r) := \frac{1}{(m-1)!} \frac{z^{-r} G(z)}{\det \Gamma_{\Psi}(z)} \left(r \Gamma_{\Psi}^{-1} \right)^{m-1}.$$
 (10.3.3)

The remainder term is of a lower exponential order, $\exp[|\mathbf{r}|(\hat{\mathbf{r}} \cdot \log z - \varepsilon)]$, uniformly as $\hat{\mathbf{r}}$ varies over compact subsets of the interior of N(z).

 Γ_{Ψ} is the matrix whose rows are the logarithmic gradients $\nabla_{\log} H_j(z)$:

$$\Gamma_{\Psi} = \left[x_j \frac{\partial H_i}{\partial x_j} \right]_{i,j}$$

A lattice path enumeration problem

Let $S = \{ \swarrow, \rightarrow, \downarrow \}$. T = walks start at (0, 0) end anywhere. Using a reflection principle argument:

$$T(z) = \Delta \frac{\left(1 - \frac{y^2}{x} + \frac{y^3}{y^2} - \frac{x^2y^2}{x^3} - \frac{x^2}{y^2}\right)}{\left(1 - \frac{zxy(1}{x} + \frac{x}{y} + \frac{y}{y})\right)\left(1 - \frac{x}{y}\right)}$$

Three critical points:

$$(w, w^2, w^2/3), (w^2, w, w/3), (1, 1, 1/3)$$

$$[z^n]T(z) = 3^n \cdot n^{-3/2} \cdot \frac{3\sqrt{3}}{4\sqrt{\pi}} + O(3^n \cdot n^{-5/2})$$

The two smooth critical points give a contribution $O(3^n/n^2)$.

Two Main Takeaway Ideas

Summary

Diagonal Asymptotics

Given:

$$F(\mathbf{z}) = G(\mathbf{z})/H(\mathbf{z}) = \sum f(\mathbf{n})\mathbf{z}^{\mathbf{n}}$$

Determine the asymptotics of f(n, n, ..., n) as $n \to \infty$

- Singular Variety $\mathcal{V} = \{ \mathbf{z} \mid H(\mathbf{z}) = 0 \}$
- Minimal Points: $\partial \mathcal{D} \cap \mathcal{V}$
- Critical points minimize: $|\rho_1 \dots \rho_d|^{-1}$ (with value μ , say)
- Minimal critical point ρ contained in both

$$\underbrace{-\log |z_1| - \dots - \log |z_d| = \log \mu}_{\text{a hyperplane}} \quad \rho \in \partial \mathcal{D} \cap \mathcal{V}$$

• Treat each critical point: If variety is smooth at critical point, THM A; Transverse multiple point THM B; Else...

Bibliography

- Analytic Combinatorics in Several Variables. Pemantle and Wilson Cambridge University Press
- Analytic Combinatorics in Several Variables: Effective Asymptotics and Lattice Path Enumeration. PhD thesis of Stephen Melczer 2017
- Upcoming: Introductory Multidimensional Analytic Combinatorics. Marni Mishna, CRC Press

