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A Course on Analytic Combinatorics

Objectives

Develop a combinatorial understanding of various function classes, esp.

algebraic, and D-finite

Examine singularities of multivariable combinatorial generating functions

and understand the relationship between geometry and the coefficient

asymptotics.

Organization

I. Combinatorial Functional Equations and Taxonomy

II. Singularities and Critical Points

III. Diagonal Asymptotics



I. Combinatorial Functional Equations



Combinatorial Classes

tree 7→ z#nodes

C (z) = z + 2z2+ 5z3+ 14z4+ 42z5

Given a class C, and size |·|

C (z) :=
∑
γ∈C

z |γ|

C (z) =
∑
n≥0

cnz
n

cn = # objects of size n

C (z) is the ordinary generating function (OGF) for C



Objectives

Enumerate objects exactly or

asymptotically cn =?

Understand the large scale behaviour of the

objects in a class

Interpret functional equations combinatorially

Answer the question:

Under which conditions does the OGF of a

combinatorial class satisfy a linear ODE with

polynomial coefficients?

D-finite/ Holonomic/ G-functions

Everything is non-holonomic unless it is holonomic by design.

Flajolet, Gerhold and Salvy



Combinatorial Calculus

C Notes C (z)=
∑

z |γ|

Epsilon {ε} |ε| = 0 1

Atom {◦} |◦| = 1 z

Disjoint Union A + B γ × εA, γ × εB A(z) + B(z)
Cartesian Product A×B (α, β), α ∈ A, β ∈ B A(z)B(z)
Power Ak (α1, . . . , αk), αi ∈ A A(z)k

Sequence Seq(A) = A∗ ε+A +A2 +A3 + . . . 1
1−A(z)

Binary Words {ε, ◦, •, ◦◦, ◦•, •◦, ••, ◦◦◦, . . . }
{◦} {•} A = {◦, •} C = A∗

↓ ↓ ↓ ↓ ↓ ↓
z z A(z) = 2z C (z) = 1

1−A(z)

=⇒ C (z) = 1
1−2z



Combinatorial Calculus

C Notes C (z)=
∑

z |γ|

Epsilon {ε} |ε| = 0 1

Atom {◦} |◦| = 1 z

Disjoint Union A + B γ × εA, γ × εB A(z) + B(z)
Cartesian Product A×B (α, β), α ∈ A, β ∈ B A(z)B(z)
Power Ak (α1, . . . , αk), αi ∈ A A(z)k

Sequence Seq(A) = A∗ ε+A +A2 +A3 + . . . 1
1−A(z)

Binary Trees {�, �

•
� , �

•
�

•
�

, �

•
�

•
�

, �

•
�

•

�

•
� , . . . }

{•} {�} B = � + • × B2

↓ ↓ ↓ ↓ ↓ ↓
1 z B(z) = z + 1 · B(z)2

=⇒ B(z) = 1−
√
1−4z
2z



Specifications

Generically we specify a combinatorial class by a set of combinatorial

equations (like we have just seen):

C1 = Φ1(Z,C1, . . . ,Cr )

...

Cr = Φr (Z,C1, . . . ,Cr ).

(1)

.... and deduce a system of functional equations satisfied by the

generating functions:

C1(z) = Φ1(z ,C1(z), . . . ,Cr (z))

...

Cr (z) = Φr (z ,C1(z), . . . ,Cr (z)).

(2)

Cyclic dependencies change the nature of the generating function.



Acyclic Dependencies: S-regular classes

Combinatorial classes specified using +,×, ∗, Atoms, and Epsilons with

no cyclic dependencies are S-regular classes.

L = Seq({0}+ ({1} × Seq({0} × Seq({1})× {0})× {1}))

= (0 + (1(01∗0)∗1))∗ = {ε, 0, 00, 11, 000, 011, 1001, 10101, . . . }

L(z) =
1

1−
(

z + z 1
1−z 1

1−z z

)

Theorem

The generating function of an S-regular class is a rational function.

Remark: Not all rational functions Taylor series in N[[z ]] arise this way.

(∃ singularity criteria)



Cyclic Dependencies: Algebraic Classes

Well defined combinatorial classes specified using +,×, Atoms, and

Epsilons (using possibly cyclic dependencies) are algebraic classes.

B = �+ • ×B×B

Theorem

The generating function of an algebraic class is an algebraic function.

Remark: If a class has a transcendent OGF, it is not an algebraic class.

Remark: Not all algebraic functions with series in N[[z ]] arise this way.

(∃ asymptotic criteria)



Derivation Tree

The history of rules expanded is encoded in derivation tree.

We identify derivation trees and elements

Motzkin Paths M

Walks with steps {↗,↘,→} confined to

the upper half plane.

M ≡ ε+→M+↗M↘M.

−→↗
−→↘∈M

M

→ M

↗ M

→ M

ε

↘ M

ε



Combinatorial Parameters

A parameter of a class is a map χ : C→ Z
e.g. # → steps ; # leaves in a tree ; end height of a walk

C (u, z) :=
∑
γ∈C

uχ(γ)x |γ| =
∑
n≥0

(∑
k∈Z

ck,nu
k

)
zn.

ck,n = # objects of size n with parameter value k .

C (u, z) ∈ N[u, u−1][[z ]] Power series with Laurent polynomial coefficients

Example

χ(w) = |w |◦ = # ◦s a word in {◦, •}∗: χ(◦ • • ◦ •) = 2

B(u, z) = 1 + (u + 1) z +
(

u2 + 2 u + 1
)

z2 +
(

u3 + 3u2 + 3u + 1
)

z3 + . . . .

B(u, z) =

(
1

1− (z + uz)

)
. (3)



Inherited parameters

The parameter χ is inherited from ξ and ζ if, and only if ...

C = A+B

χ(γ) =

{
ξ(γ) γ ∈ A

ζ(γ) γ ∈ B

=⇒ C (z) = A(z) + B(z)

C = A×B

χ(α, β) = ξ(α) + ζ(β).

=⇒ C (z) = A(z)B(z)

e.g. B(u, z) =
(

1
1−(z+uz)

)
.

Straightforward translation of structural parameters to OGF



Derived Classes

Given a class C, multidimensional inherited parameter χ : C→ Zd , and

vector r , define a derived class of C as any class

Cχ,r = ∪n{γ ∈ C | χ(γ) = (r1n, . . . , rdn), |γ| = n}

Fixed Value

If r = (0, 0, . . . , 0), then χ = (0, 0, . . . , 0): This is the constant term

with respect to the non-size variables.

Balanced Subclasses

χ counts occurrences of subobjects; r = (1, 1, . . . , 1)

After two examples, we consider to how find the generating functions of

derived classes.



Balanced word classes

L = {binary expansions of n | n ≡ 0 mod 3.} Size = length of string

L = {ε,
0
0, 00, 000, . . . ,

3
11, 011, 0011, . . . ,

6
110, 0110, 00110, . . . ,

9
1001, 01001,

12
1100, 01100, . . . ,

15
1111, 01111, . . . }

S-regular specification: L = (0 + (1(01∗0)∗1))∗

Parameter: χ(w) = (|w |0 , |w |1) = (#0s in w ,#1s in w)
Balanced sub-class:

L= = {w ∈ L | χ(w) = (n, n), n ≥ 0}
= {w ∈ L | #0s = #1s}
= {1001, 0011, 0110, 1100, 010101, 101010, 11100001, 10011001,

10000111, 00101101, 01011010, 00111001, 00100111, . . . }

more interesting: L ⊆ {a1, a2, . . . , ad}∗ with χi(w) = # of ai in w .



Excursions

S = {↑, ↓,←,→} = is a set of steps.

Consider walks starting at (0, 0) steps

from S . Unrestricted walks are S-regular:

{↑, ↓,←,→}∗

Define parameter χ(w):= endpoint of w .

Endpoint is an inherited parameter∑
walkZ2 ((0, 0)

n→ (k , `)) xky `tn =
1

1− t(x + 1/x + y + 1/y)

Excursions are a derived class

E = {w ∈ {↑, ↓,←,→}∗ | χ(w) = (0, 0)}



Diagonals

The central diagonal maps series expansions to series expansions. e.g.

∆ : K [[z1, z−11 , . . . , zd , z−1d ][[t]]→ K [[t]].

defined as:

∆F (z, t) = ∆
∑
k≥0

∑
n∈Zd

f (n, k) zntk :=
∑
n≥0

f (n, n, . . . , n) tn. (4)

∆(z21 z2t + 3z1z2t+ 7z1z2t
2 + 5z21z

2
2t
2) = 3t + 5t2

Defined for any series.

We use diagonals to describe the generating functions of derived classes.



Example: Multinomials

Central diagonal

∆
1

1− x − y
= ∆

∑
n≥0

(x + y)n = ∆
∑
`≥0

∑
k≥0

(
`+ k

k

)
xky ` =

∑
n≥0

(
2n

n, n

)
yn.

Off center diagonals

∆(r ,s) 1

1− x − y
=
∑
n≥0

(
rn + sn

rn, sn

)
yn.

This example generalizes naturally to arbitrary dimension, using

multinomials:

∆r
1

1− (z1 + · · ·+ zd)
=
∑
n≥0

(
n(r1 + · · ·+ rd)

nr1, . . . , nrd

)
znd .



Balanced word classes

L = {binary expansions of n | n ≡ 0 mod 3.}
Size = length of string

L = (0 + (1(01∗0)∗1))∗

Parameter χ(w) = (|w |0 , |w |1) = (#0s in w ,#1s in w)

L= = {w ∈ L | #0s = #1s}

= {ε, 1001, 0011, 0110, 1100, 010101, 101010, 11100001, 10011001, . . . }

L(x , y) =
1

1−
(

x + y2

1− x2

1−y

) L=(y) = ∆L(x , y)

L=(y) = ∆
(

1 + x + ..+ y2(1 + 2x + 4x2 + ..) + y3(x2 + 2x3 + 5x4 + ..) + . . .
)

= 1 + 4y2 + 2y3 + 36y4 + . . .

(size by half length)



Other subseries extraction as diagonal
F (z, t) with series ∈ K [[z1, z−11 , . . . , zd , z−1d ][[t]]:∑

k≥0

∑
n∈Zd

f (n, k) zntk

Constant Term

CT F (z, t) =
∑
n≥0

f (0, 0, . . . , 0, n) tn

= ∆F

(
1

z1
, . . . ,

1

zd
, z1z2 . . . zd t

)

Positive Series

[z≥01 . . . z≥0k ]F (x, t) =
∑
n∈Nd

f (n, k) zntk

= ∆

F
(
1
z1
, . . . , 1zd , z1z2 . . . zd t

)
(1− z1) . . . (1− zk)





Excursions

Excursions: start and end at (0, 0) with

steps from S = :

E = {w ∈ {↑, ↓,←,→}∗ | χ(w) = (0, 0)}

OGF for excursions:∑
walkZ2 ((0, 0)

n→ (0, 0)) tn = [x0y0]
1

1− t(x + 1/x + y + 1/y)

= ∆
1

1− txy(1/x + x + 1/y + y))



The set of combinatorial classes with OGF a diagonal of N-rational is

smaller than you’d like. (does not include Catalan!)

Differences of these classes are a wider class of series.



Walks confined to a quadrant - Reflection Principle

∑
n≥0

walkN2((0, 0)
n−→ (0, 0)) tn

+1−1

−1+1

= [x1y1]
xy − x/y + (xy)−1 + y/x

(1− t(x + 1/x + y + 1/y))

= CT

(
x − 1x

) (
y − 1y

)
xy(1− t(x + 1/x + y + 1/y))

= ∆
xy
(

x − 1x
) (

y − 1y
)

1− txy(x + 1/x + y + 1/y)

= ∆
(x2 − 1)(y2 − 1)

1− t(x2y + y + xy2 + x)
.



Diagonals and combinatorial generating functions

Univariate algebraic functions are diagonals of bivariate rationals.

D-finite functions

Algebraic functions are D-finite

Diagonals of D-finite functions are D-finite

OGFs of derived subclasses of algebraic and S-regular

Reflection principle – walks in Weyl chambers (from representation

theory)

Lingering questions

Are combinatorial D-finite functions always diagonals? Are D-finite

classes always (in bijection with) a derived class of an algebraic or

regular? algebraic combination of derived classes?



Taxonomy of Generating Functions

Rational

Algebraic

D-finite

Differentiably Algebraic

Hypertranscendental



Classic results of great utility to the combinatorialist

Nature and type of singularities for series solutions of different

equations types

Behaviour near the singularities

Asymptotic form of solutions for algebraic and linear ODE

equations

Results on series with positive coefficients (Pringsheim, Polya

Carlson, Fatou,. . . )

F (z) converges inside the unit disc =⇒ it is a rational function or

transcendental over Q(z).



Transcendency
Transcendental OGF =⇒ class has no algebraic specification.

Trancendancy criterion

[zn]F (z) ∼ Cµnns , s 6∈ Q \ {−1,−2, . . . }

C = {u ∈ {a, b, c}∗ | |u|a 6= |u|b or |u|a 6= |u|c}

{a, b, c}∗ \ C = {u ∈ {a, b, c} | |u|a = |u|b = |u|c}

3n − cn =

(
3n

n, n, n

)
∑

3nzn︸ ︷︷ ︸
rational

−
∑

cnzn =
∑(

3n

n, n, n

)
︸ ︷︷ ︸
∼C 27nn−1︸ ︷︷ ︸

transcendental

zn

=⇒
∑

cnzn transcendental



Conclusion

1 Dictionary between combinatorial specification and OGF functional

equations

2 3 families of combinatorial classes: S-regular, algebraic, derived

subclasses

3 Use results on the nature of solutions to help sort objects and

make effective computation

4 Diagonal operator is used to describe many combinatorial classes

∆F (z, t) = ∆
∑
k≥0

∑
n∈Zd

f (n, k) zntk :=
∑
n≥0

f (n, n, . . . , n) tn.

5 Christol’s Conjecture: Every G-series is a diagonal of a rational

function

6 Next: Given a multivariable rational function, determine the

coefficient asymptotics of a diagonal.
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II. Singularities and Critical Points



Objective

Systematic methods to determine asymptotic estimates for the number

of objects of size n in combinatorial class C.

Understand the singularity structure of its OGF C (z)

Part II: Focus on diagonals of multivariable rationals (e.g. OGFs of

derived classes)

∆
G (z, t)

H(z, t)
= ∆

∑
k≥0

∑
n∈Zd

f (n, k) zntk :=
∑
n≥0

f (n, n, . . . , n) tn.

Analytic Strategy

Relate the singularities of
G(z,t)
H(z,t) and ∆

G(z,t)
H(z,t) .

Study the geometry of the variety of points annihilating H.



Univariate Singularity



Poles

F (z) =
1

(1− z3)(1− 4z)2(1− 5z4)

1 + 8z + 54 z2 + 304 z3 + 1599 z4 + 7928 z5 + O
(

z6
)

Re z

Im z

C

Poles of F (z)
Value of |F (z)|



Branch Point Singularity

C (z) =
1−
√

1− 4z

2z
1 + z + 2z2+ 5z3+ 14z4+ 42z5+ 132z6+ O(z7)

|C (z)|
Im C (z)



Exponential growth and the radius of convergence

F (z) =
∑
n≥0

fn zn ∈ R>0[[z ]]

=⇒ there is a positive real valued singular point ρ ∈ R>0 on the circle

of convergence. (Pringshheim)

Exponential growth

µ := lim sup
n→∞

fn
1/n

“fn ∼ κµnnα ′′

ROC (F (z)) = ρ =⇒ µ = ρ−1



Convergence and the Exponential Growth

The radius of convergence F (z) = ρ

=⇒ exponential growth of [zn]F (z) = ρ−1.

1

(1− z3)(1− 4z)2(1− 5z4)

lim
n→∞

r
1/n
n = 4

1−
√

1− 4z

2z

lim
n→∞

c
1/n
n = 4



The first principle of coefficient asymptotics

The location of singularities of an analytic function

determines the exponential order of growth of its

Taylor coefficients.

We connect the boundary of convergence and exponential growth.



Preview: An analogy

Here is a rough idea of what the multivariable case looks like.

Univariate Rationals

F (z) =
G (z)

H(z)
=
∑

fnz
n

fn ∼ Cµnnα

dominant singularity: ρ ∈ C on circle of

convergence satisfying H(ρ) = 0

µ = |ρ|−1

Multivariable Rationals

∆
G (z1, . . . , zd)

H(z1, . . . , zd)
=
∑

fnn...nz
n
d

fnn...n ∼ Cµnnα

minimal critical point: (ρ1, . . . , ρd) on

the boundary of convergence satisfying

H(ρ1 . . . , ρd) = 0 + other equations.

µ = |ρ1 . . . ρd |−1



Multivariable Series



Convergence of multivariable series

View the series as an iterated sum.∑
nd

(
. . .

(∑
n1

a(n1, . . . , nd)zn11

)
. . .

)
zndd

The domain of convergence, denoted D ⊆ Cd , is the interior of the set of

points where the series converges absolutely.

The polydisk of a point z is the domain

D(z) = {z′ ∈ Cd : |z ′i | ≤ |zi |, 1 ≤ i ≤ d}.

The torus associated to a point is

T (z) = {z′ ∈ Cd : |z ′i | = |zi |, 1 ≤ i ≤ d}.

A domain of convergence is multicircular.

z = (z1, . . . , zd) ∈ D =⇒ T (z) ⊆ D =⇒ (ω1z1, . . . , ωdzd) ∈ D, |ωk | = 1



What is a singularity of G/H?

The set of singularities of G (z)/H(z) is the algebraic variety

V := {z : H(z) = 0}.

minimal points (working definition)

The set of minimal points of a series expansion of F is the set of

singular points on the boundary of convergence.

V ∩ ∂D

A point z is strictly minimal if V ∩D(z) = {z}



Example: 1D

Definitions

The set of minimal points of a

series development of F is the set

of singular points on the boundary

of convergence.

V ∩ ∂D

A point z is strictly minimal if

V ∩D(z) = {z}

Re z

Im z

C

H(z) = (1− z3)(1− 4z)2(1− 5z4)

∂D = {z : |z | = 1/4}, V = {1/4, 1,w ,w2, (15)1/4}
minimal point: V ∩D = {1/4}, strictly minimal.



Example: F (x , y ) = 1
1−x−y

Taylor expansion:
∑
k,`

(
k+`
k

)
xky `

Convergence at (x , y)
=⇒ convergence at (|x | , |y |)

F (|x |, |y |) =
1

1− |x | − |y | =⇒ |x |+ |y | < 1

∂D = {(x , y) ∈ C2 | |x |+ |y | = 1}
V = {(z , 1− z) | z ∈ C} D

V

|x |

|y |

1

1

Minimal points V ∩ ∂D

{(z , 1− z) | |z |+ |1− z | = 1} = {(x , 1− x) | x ∈ R>0}

All strictly minimal.



A first formula for exponential growth for diagonal

coefficients



Convergence and exponential growth
Given series

∑
a(n) zn and z ∈ D,∑

n∈Nd
a(n)|z1|n1 |z2|n2 . . . |zd |nd is convergent (absolute conv).

=⇒
∑
n∈N

a(n, n, . . . , n) |z1|n|z2|n . . . |zd |n is convergent (subseries).

=
∑
n

a(n, n, . . . , n)|z1z2 . . . zd |n

=⇒ t = |z1z2 . . . zd | is within the radius of convergence of ∆F (z).

µ ≤ lim sup
n→∞

|a(n, n, . . . , n)|1/n ≤ |z1z2 . . . zd |−1 with ∀z ∈ D

≤ inf
(z1,...,zd )∈D

|z1z2 . . . zd |−1.

Thm: Under conditions of non-triviality, the infimum is reached at a minimal

point:

µ = inf
z∈∂D∩V

|z1 . . . zd |−1. (5)



Example: Binomials F (x , y ) = (1− x − y )−1

Minimal points: ∂D ∩ V = {(x , 1− x) ∈ R2 : 0 < x < 1}.

µ = lim sup
n→∞

a(n, n)1/n = inf
(x ,y)∈∂D∩V

|xy |−1 = inf
x∈R:0≤x≤1

(x(1− x))−1 = 4.

We can consider non-central diagonals.

lim sup
n→∞

a
1/n
rn sn = inf

(x ,y)∈∂D
|x ry s |−1 = inf

x∈R
(x r (1− x)s)−1.

This is minimized at x = r
r+s .

The exponential growth:

µ =

((
r

r + s

)r ( s

r + s

)s)−1
.

We got lucky here – we could easily write y in terms of x . What to do

in general?



Computing critical points



The height function h

Astuce

We convert the multiplicative minimization to a linear minimization

using logarithms.

To minimize |z1 . . . zd |−1, minimize:

− log |z1 . . . zd | = − log |z1| − · · · − log |zd |︸ ︷︷ ︸
linear in log |zi |

Define a function h : V∗ → R: V∗ = V \ {z : z1 . . . zd 6= 0}

(z1, . . . , zd) 7→ − log |z1| − · · · − log |zd |.

The map h is smooth =⇒ minimized at its critical points. When

r = (1, . . . , 1), the critical points are solutions to the critical point

equations:

H(z) = 0, z1
∂H(z)

∂z1
= zj

∂H(z)

∂zj
, 2 ≤ j ≤ d .



Critical points

Critical points are potential locations of minimizers of |z1 . . . zd |−1.
In the most straightforward cases it suffices to compare the values of

this product and select the critical point that is the global minimizer.

A critical point is strictly minimal if it is on the boundary of

convergence of the series.

In these generating functions the asymptotics is driven by a finite

number of isolated minimal points. Simplest case.



Visualize Critical Points

Critical points of (1− x − y )−1 for r = (1, 1)

1 ρ ∈ V ∩ ∂D ρ = (1/2, 1/2)

2 minimize h(x , y) = − log |x | − log |y | h(x , y) = −2 log 2

3 µ = |ρ1ρ2|−1 limn→∞
(
2n
n

)1/n
= 4

D

V

|x |

|y |

1

1

− log |x |

− log |y |
h(x , y) = −2 log 2

D

V

(x , y) 7→ (− log |x | ,− log |y |)



Trinomial (1− x − y − z)−1

Critical points

1 ρ ∈ V ∩ ∂D ρ = (13 ,
1
3 ,
1
3)

2 minimize h(x , y , z) = − log |x | − log |y | − log |z |
h(x , y , z) = 3 log 3

3 µ = |ρ1ρ2ρ3|−1 limn→∞
(
3n
n,n,n

)1/n
= 27



Non-central diagonals

If we want a non-central diagonal, we want to minimize

|z r11 . . . z rdd |
−1 in ∂D ∩ V.

Instead take height function here is

(z1, . . . , zd) 7→ −r1 log |z1| − · · · − rd log |zd |.

The equations change. For example, in 2D, diagonal (r , s), solve the

equations:

H(x , y) = 0, s x
∂H(x , y)

∂x
= r y

∂H(x , y)

∂y
.



Critical point depends on the diagonal ray

Delannoy Numbers

d(rn, sn) := [x rny sn](x + y + xy)n

(r , s) −r log |x | − s log |y | ρ

(1, 1) −−−−−− ( 1√
2−1 ,

1√
2−1 )

(5, 2) − − − ( 15 ,
2
3 )



Summary: To Find Critical Points

Given: G (x , y)/H(x , y) =
∑

fk,` x jy k , irreducible H

(r , s) ∈ R2>0
Determine: µ = lim supn→∞ f

1/n
rn,sn, critical points ρ

Find solutions {ρ} to the (r , s)-critical point equations.

Hint: Find Gröbner basis of

[H, s*x*diff(H, x)-r*y*diff(H,y)]

Ensure T (ρ) ⊂ ∂D
Set µ = min |ρ1 . . . ρd |−1 among those solutions with no 0

coordinate.

We use the set of such ρ to find the sub-exponential growth

(tomorrow)

Nontriviality requirement: ρ to be smooth as a function of (r , s)
near where you want it.



Balanced Binary Words
Let L =Binary words over {0, 1} with no run of 1s of length 3.

L = (ε+ 1 + 11) · (0 · (ε+ 1 + 11))∗

Parameter: χ(w) = (|w |0 , |w |1)

L= = {w ∈ L | χ(w) = (n, n)}

L=(y) = ∆
1 + x + x2

1− y(1 + x + x2)

GB of Critical point equations: [x2 − 1, x + 3y − 2]

two solutions: (1, 1/3) (−1, 1)

µ = min |ρ1 . . . ρd |−1 (1, 1/3) 7→ 3 (−1, 1) 7→ 1

BUT (1, 1) ∈ T (−1, 1) =⇒ (−1, 1) is not a minimal point

because (1, 1) outside of domain of convergence.

[yn]L=(y)→ κ3nnα



Visualize the boundary



Simple Excursions

Let E be the set of simple excursions in the entire plane, that is walks

that start and end at the origin, taking unit steps {↑, ↓,←,→}

e(n) = [x0y0] (x + 1/x + y + 1/y)n

We can deduce:

E (z) = ∆
1

1− zxy
(

x + 1
x + y + 1

x

)
Any critical point ρ = (x , y , z) will have z = 1

xy(x+1/x+y+1/y) from

H = 0.

Critical points: (1, 1, 1/4), (−1,−1,−1/4)

e(2n)1/2n = inf
ρ∈∂D∩V

|xyz |−1 = inf
0≤x ,y≤1

|x + 1/x + y + 1/y | = 42



Excursions for any finite step set

This phenomena is general. Let S be any weighted finite 2D step set

S(x , y) =
∑

(j ,k)∈S

w(j , k) x jy k

e(n) = [x0y0]S(x , y)n

We can deduce:

E (z) = ∆
1

1− zxyS(1/x , 1/y)

Any critical point ρ = (x , y , z) will have z = 1
xyS(1/x ,1/y) from H = 0.

lim sup
n→∞

e(n)
1
n = inf

ρ∈∂D∩V
|xyz |−1 = inf

ρ∈∂D
|S(1/x , 1/y)|

The minimum is found using the critical point eqn.



What if H factors?

Suppose H factors nontrivially into squarefree factors:

H = H1 . . .Hk

CASE A: Hj(ρ) = 0 =⇒ Hk(ρ) 6= 0 for j 6= k : OK.

CASE B: Must decompose V into strata, and find critical points for

each stratum independently. **Important to keep track of the

co-dimension of the stratum for later.**



Walks in the quarter plane that end anywhere

Let S = {↖,→, ↓}. T= walks start at (0, 0) end anywhere. Using a

reflection principle argument:

T (z) = ∆

(
1− y2/x + y3 − x2y2 + x3 − x2/y

)
(1− zxy(1/x + x/y + y)) (1− x)(1− y)

(6)

Critical points

We divide VH into strata and we determine critical points from each of

them.



Image of V under (x , y , z) 7→ (|x | , |y | , |z |)

S1

S12
S123

Misleading picture as all three critical points appear to be in S123.



Image of V under (x , y , z) 7→ (− log |x | ,− log |y | ,− log |z |)

Stratum Critical points value of |xyz |−1

S1 (w2,w ,w/3) , (w ,w2,w2/3) 1/3

S12
S23
S123 (1, 1, 1/3) 1/3



A lattice path enumeration problem

Let S = {↖,→, ↓}. T= walks start at (0, 0) end anywhere. Using a

reflection principle argument:

T (z) = ∆

(
1− y2/x + y3 − x2y2 + x3 − x2/y

)
(1− zxy(1/x + x/y + y)) (1− x)(1− y)

We conclude: Three critical points:

(w ,w2,w2/3), (w2,w ,w/3), (1, 1, 1/3)

(Potential for periodicity..)

Exponential growth: tn ∼ C 3nnα.

Tomorrow: find C , α.



Next..

Determine how each contributing critical point

modulates the dominant exponential term by a

subexponential factor.
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III. Diagonal Asymptotics



The problem

Diagonal Asymptotics

Given:

F (z) = G (z)/H(z) =
∑

f (n)zn

Determine the asymptotics of f (n, n, . . . , n) as n →∞

Singular Variety V = {z | H(z) = 0}
Minimal Points: ∂D ∩ V

Critical points minimize: |ρ1 . . . ρd |−1 (with value µ, say)

Minimal critical point ρ contained in both

− log |z1| − · · · − log |zd | = logµ︸ ︷︷ ︸
a hyperplane

ρ ∈ ∂D ∩ V



Balanced Binary Words
Let L =Binary words over {0, 1} with no run of 1s of length 3.

L = (ε+ 1 + 11) · (0 · (ε+ 1 + 11))∗

Parameter: χ(w) = (|w |0 , |w |1)

L= = {w ∈ L | χ(w) = (n, n)}

L=(y) = ∆
1 + x + x2

1− y(1 + x + x2)

GB of Critical point equations: [x2 − 1, x + 3y − 2]

two solutions: (1, 1/3) (−1, 1)

µ = min |ρ1 . . . ρd |−1 (1, 1/3) 7→ 3 (−1, 1) 7→ 1

BUT (1, 1) ∈ T (−1, 1) =⇒ (−1, 1) is not a minimal point

because (1, 1) outside of domain of convergence.

[yn]L=(y)→ κ3nnα



First Principle of Coefficient Asymptotics

The location of singularities of an analytic function

determines the exponential order of growth of its

Taylor coefficients.

We connect the boundary of convergence and exponential growth.



Second Principle of Coefficient Asymptotics

The nature of the singularities determines the way the

dominant exponential term in coefficients is modulated

by a subexponential factor.

Nature = geometry of the singular variety at the critical point.



The problem

Diagonal Asymptotics

Given:

F (z) = G (z)/H(z) =
∑

f (n)zn

Determine the asymptotics of f (n, n, . . . , n) as n →∞

Singular Variety V = {z | H(z) = 0}
Minimal Points: ∂D ∩ V

Critical points minimize: |ρ1 . . . ρd |−1 (with value µ, say)

Minimal critical point ρ satisfies

− log |ρ1| − · · · − log |ρd | = logµ︸ ︷︷ ︸
a hyperplane

ρ ∈ ∂D ∩ V

What are the geometries we can handle?



Behaviour at critical point ρ

− log |ρ1| − · · · − log |ρd | = logµ ρ ∈ ∂D ∩ V

Smooth Point

e.g. excursions

THM A (Hörmander)

Transverse Multiple

Point

e.g. general walks

THM B (Pemantle and Wilson)

Arrangement Point

e.g. vector partitions

polytope dilation

Decompose F ;THM B



Univariate Case



Cauchy Integral Formula

The heart of analytic combinatorics.

Theorem

Suppose that F (z) is analytic at the origin, with Taylor series expansion

F (z) =
∑
n≥0 f (n) zn. Then for all n ≥ 0,

f (n) =
1

(2πi)

∫
γ

F (z)

zn+1
dz (7)

where γ is a counterclockwise circle about the origin sufficiently small that

F (z) is analytic in its interior and is continuous on it.

Strategies

1 Estimate integral by curvelength × max on curve

2 Use someone else’s estimate.



Transfer Theorem

Theorem

Assume that, with the sole exception of the singularity z = 1, F (z) is analytic

in the domain

Ω = {z | |z | ≤ 1 + ν, |arg(z − 1)| ≥ φ}

for some ν > 0 and 0 < φ < π/2. Assume further that as z tends to 1 in Ω,

F (z) = (1− z)α log

(
1

1− z

)β
O

((
log

1

1− z

)−1)

for some real α and β such that α 6∈ {0, 1, 2, . . . }. Then

[zn]F (z) =
n−α−1

Γ(−α)
logβ n

(
O
(
log−1 n

))
.

Ref: Flajolet Odlyzko, 1990



Rewrite as a sum of residues

0
α1

α2

α3

γR

γ

γ0
γα1

γα2

γα3

0 =

∫
γ

F (z)/zn+1dz

=

∫
γR

F (z)/zn+1dz +

∫
γ0

F (z)/zn+1dz︸ ︷︷ ︸
f (n)

+
∑

s∈{α1,...,αm}

∫
γs

F (z)/zn+1.

= O(R−n) + f (n) +
∑

s∈{α1,...,αm}

∫
γs

F (z)/zn+1.

f (n) =
∑
s∈{α1,...,αm}

∫
γs

F (z)/zn+1 + O(R−n)



Key Multivariable Theorem



Multidimensional Cauchy Integrals

Theorem

Fix d and let z = (z1, . . . , zd). Suppose that F (z) ∈ C(z) is analytic at

the origin, with Taylor series expansion F (z) =
∑
n∈Nd f (n) zn Then for

all n ≥ 0,

f (n) =
1

(2πi)d

∫
T

F (z)

(z1 . . . zd)n
·

dz1 . . . , dzd
z1 . . . zd

,

where T is the torus T (ε) = T (ε1, ε2, . . . , εd) has each εj sufficiently

small such that F (z) is analytic in the interior of D(ε), and is analytic

on the boundary.



Smooth Point Asymptotics



Case 1: Smooth point asymptotics

The minimal critical point ρ is a smooth point if ∂kH(ρ) 6= 0 for all k .

Example

The point (1, 1, 1/3) is a smooth critical point for

H(x , y) = 1− y(1 + x + x2):

Compute Hx (x , y) = y(1 + 2x), Hy = (1 + x + x2)

Verify Hx (1, 1, 1/3) = 1 6= 0,Hy (1, 1, 1/3) = 3 6= 0.



Tool: Fourier Laplace Integrals

The strategy is to rewrite Cauchy Integrals as Fourier-Laplace integrals:∫
N

A(t)e−λφ(t)dt1 . . . dtd ,

with the functions A and φ analytic over their domain of integration,

and N is some neighbourhood in Rd .

As we saw yesterday, often asymptotic estimate for these integrals are

known.



Smooth Point: THM A

Suppose A : Cd → C and φ : Cd → C are both smooth in a neighbourhood N

of 0 and that

φ(0) = 0

φ has a critical point at t = 0, i.e., that (∇φ)(0) = 0, and that the origin

is the only critical point of φ in N;

the Hessian matrix H of φ has i , j th entry ∂i∂jφ(t), and at t = 0 is

non-singular;

the real part of φ(t) is non-negative on N.

Then for any integer M > 0 there exist computable constants C0, . . . ,CM such

that ∫
N

A(t) e−nφ(t)dt =

(
2π

n

)d/2
det(H)−1/2 ·

M∑
k=0

Ckn−k + O
(

n−M−1
)
.

C0 = A(0)
If A(t) vanishes to order L at 0 then C0 = · · · = Cb L

2
c = 0. [Hörmander]



Balanced Binary Words with no Runs

We complete the asymptotic analysis of the number of balanced binary

words over {0, 1} such that no word has a run of 1s of length 3 or

longer. The generating function by halflength is

∆
1 + x + x2

1− y(1 + x + x2)
.

There is a minimal critical point at ρ = (1, 1/3).

Strategy

1 Remark [xnyn](1 + x + x2)(y(1 + x + x2))n = [xn](1 + x + x2)n+1

2 Write Cauchy Integral in one smaller dimension

3 Rewrite as a sum of integrals around the singularities

4 For each integral, move the singularity to 0 in a way that converts

it to a Fourier-Laplace integral.



Rewriting a Cauchy Integral as Fourier-Laplace Integral

[xn](1 + x + x2)n+1

[xn]A(x)B(x)n =
1

2πi

∫
|x |=ε

A(x)B(x)n

xn+1
dx

=
1

2πi

∫
|x−ρ|=ε

A(x)B(x)n

xn+1
dx + O((ρ+ ε)−1)

=
1

2πi

∫
N

A(ρe it)B(ρe it)n

ρn+1e it(n+1)
iρe itρdt

=
ρ−nB(ρ)n

2π

∫
N

A(ρe it)
B(ρe it)n

B(ρ)n
e−it(n+1)dt

=
ρ−nB(ρ)n

2π

∫
N

A(ρe it)e−nφ(t)dt

with φ(t) = log B(ρ)
B(ρe it ) + it. A : Cd → C and φ : Cd → C are both smooth in a

neighbourhood N of 0; φ has a critical point at t = 0, the origin is the only

critical point of φ in N;



Balanced Binary Words with no Runs
We complete the asymptotic analysis of the number of balanced binary

words over {0, 1} such that no word has a run of 1s of length 3 or

longer. The generating function by halflength is

∆
1 + x + x2

1− y(1 + x + x2)
.

There is a minimal critical point at ρ = (1, 1/3).

Strategy

1 Remark [xnyn](y(1 + x + x2))n = [xn](1 + x + x2)n

2 Write Cauchy Integral in one smaller dimension

3 Rewrite as a sum of integrals around the singularities

4 For each integral, move the singularity to 0 in a way that converts

it to a Fourier-Laplace integral.

3
3n√
2πn



How to apply to more general cases

The first step of the computation used

H = 1− yB(x) =⇒ y = B(x)−1 on V

If the variety V is smooth, and if ∂d+1H(ρ) 6= 0, then by the implicit

function theorem there is a parametrization zd = Ψ(z1, . . . , zd−1) that

we can similarly use.

We define φ and proceed as above:

φ(t) = log(ψ(ρ1e
it1 , . . . , ρd−1e

itd−1))− log(ρ)

+
i

rd
(r1t1 + · · ·+ rd−1td−1) .



A prefabricated theorem for 2D

Theorem (Pemantle + Wilson)

Let G (x , y)/H(x , y) be meromorphic and suppose that as r̂ varies in a

neighbourhood N of (r , s), there is a smoothly varying, strictly minimal smooth

critical point ρ in the direction (r , s). Finally G (ρ) 6= 0. Define z(r , s) as the

critical point in the direction (r , s), and define

Q(z(r̂)) := −y2H2y xHx − yHyx2Hx − x2y2(
H2yHxx + H2xHyy − 2HxHyHxy

)
.

If this function is nonzero in a neighbourhood of (rn, sn) then

f (rn, sn) ∼
G (ρ) (x−ry−s)

n

√
2π

√
−ρ2Hy (ρ)

nsQ(ρ)
.



Transversal Intersections



Transversal Intersection

Intuitively, two curves have a transversal intersection if the intersection

is robust to small perturbations of the curves.

YES Two non-parallel lines in R2

NO Two non-parallel lines in R3

NO y = x2 and y = 0 at (0, 0)

NO Three lines in R2

Proposition

Point ρ ∈ V is a multiple point if and only if there is a factorization

H =
∏N
j=1H

mj
j with ∇Hj(ρ) 6= 0 and Hj(ρ) = 0.

Point ρ is a transverse multiple point of order N if in addition the

gradient vectors are linearly independent.



A lattice path enumeration problem

Let S = {↖,→, ↓}. T= walks start at (0, 0) end anywhere. Using a

reflection principle argument:

T (z) = ∆

(
1− y2/x + y3 − x2y2 + x3 − x2/y

)
(1− zxy(1/x + x/y + y)) (1− x)(1− y)

Three critical points:

(w ,w2,w2/3), (w2,w ,w/3), (1, 1, 1/3)

The point (1, 1, 1/3) is at the intersection of more than one variety. Is

it transversal? ∇H1(1, 1, 1/3)
∇H2(1, 1, 1/3)
∇H3(1, 1, 1/3)

 =

−1 −1 −3

1 0 0

0 1 0

 .
This matrix of full rank, and so YES (1, 1, 1/3) is a transversal multiple

point of order 3.



Image of V under (x , y , z) 7→ (|x | , |y | , |z |)

S1

S12
S123

Misleading picture as all three critical points appear to be in S123.



Transversal Intersection: THM B

Pemantle and Wilson 2013

ΓΨ is the matrix whose rows are the logarithmic gradients ∇log Hj(z):

ΓΨ =

[
xj
∂Hi
∂xj

]
i ,j



A lattice path enumeration problem

Let S = {↖,→, ↓}. T= walks start at (0, 0) end anywhere. Using a

reflection principle argument:

T (z) = ∆

(
1− y2/x + y3 − x2y2 + x3 − x2/y

)
(1− zxy(1/x + x/y + y)) (1− x)(1− y)

Three critical points:

(w ,w2,w2/3), (w2,w ,w/3), (1, 1, 1/3)

[zn]T (z) = 3n · n−3/2 ·
3
√

3

4
√
π

+ O(3n · n−5/2)

The two smooth critical points give a contribution O(3n/n2).



Two Main Takeaway Ideas







Summary

Diagonal Asymptotics

Given:

F (z) = G (z)/H(z) =
∑

f (n)zn

Determine the asymptotics of f (n, n, . . . , n) as n →∞

Singular Variety V = {z | H(z) = 0}
Minimal Points: ∂D ∩ V

Critical points minimize: |ρ1 . . . ρd |−1 (with value µ, say)

Minimal critical point ρ contained in both

− log |z1| − · · · − log |zd | = logµ︸ ︷︷ ︸
a hyperplane

ρ ∈ ∂D ∩ V

Treat each critical point: If variety is smooth at critical point,

THM A; Transverse multiple point THM B; Else...
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