Introductory Multivariable Analytic Combinatorics

Marni Mishna

SFU
Department of Mathematics Simon Fraser University
Burnaby Canada
EFI 2019 • Anglet, France

A Course on Analytic Combinatorics

Objectives

Develop a combinatorial understanding of various function classes, esp. algebraic, and D-finite
Examine singularities of multivariable combinatorial generating functions and understand the relationship between geometry and the coefficient asymptotics.

Organization

- I. Combinatorial Functional Equations and Taxonomy
- II. Singularities and Critical Points
- III. Diagonal Asymptotics

I. Combinatorial Functional Equations

Combinatorial Classes

tree $\mapsto z^{\text {\#nodes }}$

Given a class \mathcal{C}, and size $|\cdot|$

$$
\begin{aligned}
& C(z):=\sum_{\gamma \in \mathcal{C}} z^{|\gamma|} \\
& C(z)=\sum_{n \geq 0} c_{n} z^{n}
\end{aligned}
$$

$c_{n}=\#$ objects of size n

$$
C(z)=z+2 z^{2}+5 z^{3}+14 z^{4}+42 z^{5}
$$

$C(z)$ is the ordinary generating function (OGF) for \mathcal{C}

Objectives

- Enumerate objects exactly or asymptotically $\quad c_{n}=$?
- Understand the large scale behaviour of the objects in a class
- Interpret functional equations combinatorially
- Answer the question:

Under which conditions does the OGF of a combinatorial class satisfy a linear ODE with
 polynomial coefficients?
D-finite/ Holonomic/ G-functions
Everything is non-holonomic unless it is holonomic by design.
Flajolet, Gerhold and Salvy

Combinatorial Calculus

	\mathcal{C}	Notes	$C(z)=\sum z^{\|\gamma\|}$
Epsilon	$\{\epsilon\}$	$\|\epsilon\|=0$	1
Atom	$\{0\}$	$\|0\|=1$	z
Disjoint Union	$\mathcal{A}+\mathcal{B}$	$\gamma \times \epsilon_{\mathcal{A}}, \gamma \times \epsilon_{\mathcal{B}}$	$A(z)+B(z)$
Cartesian Product	$\mathcal{A} \times \mathcal{B}$	$(\alpha, \beta), \alpha \in \mathcal{A}, \beta \in \mathcal{B}$	$A(z) B(z)$
Power	\mathcal{A}^{k}	$\left(\alpha_{1}, \ldots, \alpha_{k}\right), \alpha_{i} \in \mathcal{A}$	$A(z)^{k}$
Sequence	$\operatorname{Seq}(\mathcal{A})=\mathcal{A}^{*}$	$\epsilon+\mathcal{A}+\mathcal{A}^{2}+\mathcal{A}^{3}+\ldots$	$\frac{1}{1-A(z)}$

Binary Words $\{\epsilon, \circ, \bullet, \circ \circ, \circ \bullet, \bullet \circ, \bullet \bullet, \circ \circ \circ, \ldots\}$

$\{0\}$	$\{\bullet\}$	\mathcal{A}	$=$	$\{0, \bullet\}$	\mathcal{C}	$=$	\mathcal{A}^{*}
\downarrow	\downarrow	\downarrow		\downarrow	\downarrow		\downarrow
z	z	$A(z)$	$=$	$2 z$	$C(z)$	$=$	$\frac{1}{1-A(z)}$

$$
\Longrightarrow C(z)=\frac{1}{1-2 z}
$$

Combinatorial Calculus

	\mathcal{C}	Notes	$C(z)=\sum z^{\|\gamma\|}$
Epsilon	$\{\epsilon\}$	$\|\epsilon\|=0$	1
Atom	$\{0\}$	$\|0\|=1$	z
Disjoint Union	$\mathcal{A}+\mathcal{B}$	$\gamma \times \epsilon_{\mathcal{A}}, \gamma \times \epsilon_{\mathcal{B}}$	$A(z)+B(z)$
Cartesian Product	$\mathcal{A} \times \mathcal{B}$	$(\alpha, \beta), \alpha \in \mathcal{A}, \beta \in \mathcal{B}$	$A(z) B(z)$
Power	\mathcal{A}^{k}	$\left(\alpha_{1}, \ldots, \alpha_{k}\right), \alpha_{i} \in \mathcal{A}$	$A(z)^{k}$
Sequence	$\operatorname{Seq}(\mathcal{A})=\mathcal{A}^{*}$	$\epsilon+\mathcal{A}+\mathcal{A}^{2}+\mathcal{A}^{3}+\ldots$	$\frac{1}{1-A(z)}$

Binary Trees $\{\square, \Delta$,
$\begin{array}{cccccccc}\{\bullet\} & \{\square\} & \mathcal{B} & = & \square & + & \bullet & \mathcal{B}^{2} \\ \downarrow & \downarrow & \downarrow & & \downarrow & & \downarrow & \\ 1 & z & B(z) & = & z & + & 1 & \\ & & & B(z)^{2}\end{array}$

$$
\Longrightarrow B(z)=\frac{1-\sqrt{1-4 z}}{2 z}
$$

Specifications

Generically we specify a combinatorial class by a set of combinatorial equations (like we have just seen):

$$
\begin{align*}
\mathcal{C}_{1} & =\Phi_{1}\left(\mathcal{Z}, \mathfrak{C}_{1}, \ldots, \mathcal{C}_{r}\right) \\
\vdots & \tag{1}\\
\mathcal{C}_{r} & =\Phi_{r}\left(z, \mathfrak{C}_{1}, \ldots, \mathcal{C}_{r}\right)
\end{align*}
$$

.... and deduce a system of functional equations satisfied by the generating functions:

$$
\begin{align*}
C_{1}(z) & =\Phi_{1}\left(z, C_{1}(z), \ldots, C_{r}(z)\right) \\
\vdots & \tag{2}\\
C_{r}(z) & =\Phi_{r}\left(z, C_{1}(z), \ldots, C_{r}(z)\right)
\end{align*}
$$

Cyclic dependencies change the nature of the generating function.

Acyclic Dependencies: S-regular classes

Combinatorial classes specified using,$+ \times, *$, Atoms, and Epsilons with no cyclic dependencies are S-regular classes.

$$
\begin{aligned}
& \mathcal{L}=\operatorname{Seq}(\{0\}+(\{1\} \times \operatorname{Seq}(\{0\} \times \operatorname{Seq}(\{1\}) \times\{0\}) \times\{1\})) \\
&=\left(0+\left(1\left(01^{*} 0\right)^{*} 1\right)\right)^{*}=\{\epsilon, 0,00,11,000,011,1001,10101, \ldots\} \\
& L(z)=\frac{1}{1-\left(z+z \frac{1}{1-\frac{1}{1-2} z}\right)}
\end{aligned}
$$

Theorem
The generating function of an S-regular class is a rational function.
Remark: Not all rational functions Taylor series in $\mathbb{N}[[z]]$ arise this way. (\exists singularity criteria)

Cyclic Dependencies: Algebraic Classes

Well defined combinatorial classes specified using,$+ \times$, Atoms, and Epsilons (using possibly cyclic dependencies) are algebraic classes.

$$
\mathcal{B}=\square+\bullet \times \mathcal{B} \times \mathcal{B}
$$

Theorem
The generating function of an algebraic class is an algebraic function.
Remark: If a class has a transcendent OGF, it is not an algebraic class. Remark: Not all algebraic functions with series in $\mathbb{N}[[z]]$ arise this way. (\exists asymptotic criteria)

Derivation Tree

The history of rules expanded is encoded in derivation tree. We identify derivation trees and elements

Motzkin Paths \mathcal{M}
Walks with steps $\{\nearrow, \searrow, \rightarrow\}$ confined to the upper half plane.

$$
\mathcal{M} \equiv \epsilon+\rightarrow \mathcal{M}+\nearrow \mathcal{M} \searrow \mathcal{M} .
$$

Combinatorial Parameters

A parameter of a class is a map $\chi: \mathcal{C} \rightarrow \mathbb{Z}$
e.g. \# \rightarrow steps ; \# leaves in a tree ; end height of a walk

$$
C(u, z):=\sum_{\gamma \in \mathcal{C}} u^{\chi(\gamma)_{x}|\gamma|}=\sum_{n \geq 0}\left(\sum_{k \in \mathbb{Z}} c_{k, n} u^{k}\right) z^{n} .
$$

$c_{k, n}=\#$ objects of size n with parameter value k.
$C(u, z) \in \mathbb{N}\left[u, u^{-1}\right][[z]]$ Power series with Laurent polynomial coefficients
Example
$\chi(w)=|w|_{\circ}=\#$ os a word in $\{\circ, \bullet\}^{*}: \chi(\circ \bullet \bullet \circ \bullet)=2$
$B(u, z)=1+(u+1) z+\left(u^{2}+2 u+1\right) z^{2}+\left(u^{3}+3 u^{2}+3 u+1\right) z^{3}+\ldots$

$$
\begin{equation*}
B(u, z)=\left(\frac{1}{1-(z+u z)}\right) . \tag{3}
\end{equation*}
$$

Inherited parameters

The parameter χ is inherited from ξ and ζ if, and only if \ldots

$$
\mathcal{C}=\mathcal{A}+\mathcal{B}
$$

$$
\begin{aligned}
\chi(\gamma) & = \begin{cases}\xi(\gamma) & \gamma \in \mathcal{A} \\
\zeta(\gamma) & \gamma \in \mathcal{B}\end{cases} \\
\Longrightarrow C(z) & =A(\mathbf{z})+B(\mathbf{z})
\end{aligned}
$$

$\mathcal{C}=\mathcal{A} \times \mathcal{B}$

$$
\begin{aligned}
\chi(\alpha, \beta) & =\xi(\alpha)+\zeta(\beta) . \\
\Longrightarrow C(\mathbf{z}) & =A(\mathbf{z}) B(\mathbf{z})
\end{aligned}
$$

e.g. $B(u, z)=\left(\frac{1}{1-(z+u z)}\right)$.

Straightforward translation of structural parameters to OGF

Derived Classes

Given a class \mathcal{C}, multidimensional inherited parameter $\chi: \mathcal{C} \rightarrow \mathbb{Z}^{d}$, and vector r, define a derived class of \mathcal{C} as any class

$$
\mathcal{C}^{\chi, r}=\cup_{n}\left\{\gamma \in \mathcal{C}\left|\chi(\gamma)=\left(r_{1} n, \ldots, r_{d} n\right),|\gamma|=n\right\}\right.
$$

Fixed Value

If $r=(0,0, \ldots, 0)$, then $\chi=(0,0, \ldots, 0)$: This is the constant term with respect to the non-size variables.

Balanced Subclasses

χ counts occurrences of subobjects; $r=(1,1, \ldots, 1)$
After two examples, we consider to how find the generating functions of derived classes.

Balanced word classes

$$
\begin{gathered}
\mathcal{L}=\{\text { binary expansions of } n \mid n \equiv 0 \quad \bmod 3 .\} \quad \text { Size }=\text { length of string } \\
\mathcal{L}=\{\epsilon, 0,00,000, \ldots, 11,011,0011, \ldots, 110,0110,00110, \ldots, \\
9 \\
1001,01001,1100,01100, \ldots, 1111,01111, \ldots\}
\end{gathered}
$$

S-regular specification: $\quad \mathcal{L}=\left(0+\left(1\left(01^{*} 0\right)^{*} 1\right)\right)^{*}$
Parameter: $\quad \chi(w)=\left(|w|_{0},|w|_{1}\right)=(\# 0 s$ in $w, \# 1 s$ in $w)$ Balanced sub-class:

$$
\begin{aligned}
\mathcal{L}_{=}= & \{w \in \mathcal{L} \mid \chi(w)=(n, n), n \geq 0\} \\
= & \{w \in \mathcal{L} \mid \# 0 s=\# 1 s\} \\
= & \{1001,0011,0110,1100,010101,101010,11100001,10011001, \\
& 10000111,00101101,01011010,00111001,00100111, \ldots\}
\end{aligned}
$$

more interesting: $\mathcal{L} \subseteq\left\{a_{1}, a_{2}, \ldots, a_{d}\right\}^{*}$ with $\chi_{i}(w)=\#$ of a_{i} in w.

Excursions

$S=\{\uparrow, \downarrow, \leftarrow, \rightarrow\}=\ddagger$ is a set of steps.
Consider walks starting at $(0,0)$ steps from S. Unrestricted walks are S-regular:

$$
\{\uparrow, \downarrow, \leftarrow, \rightarrow\}^{*}
$$

Define parameter $\chi(w):=$ endpoint of w.

Endpoint is an inherited parameter

$$
\sum \text { walk }_{\mathbb{Z}^{2}}^{\ddagger}((0,0) \xrightarrow{n}(k, \ell)) x^{k} y^{\ell} t^{n}=\frac{1}{1-t(x+1 / x+y+1 / y)}
$$

Excursions are a derived class

$$
\mathcal{E}=\left\{w \in\{\uparrow, \downarrow, \leftarrow, \rightarrow\}^{*} \mid \chi(w)=(0,0)\right\}
$$

Diagonals

The central diagonal maps series expansions to series expansions. e.g.

$$
\Delta: K\left[\left[z_{1}, z_{1}^{-1}, \ldots, z_{d}, z_{d}^{-1}\right][[t]] \rightarrow K[[t]] .\right.
$$

defined as:

$$
\begin{gathered}
\Delta F(\mathbf{z}, t)=\Delta \sum_{k \geq 0} \sum_{n \in \mathbb{Z}^{d}} f(\mathbf{n}, k) \mathbf{z}^{n} t^{k}:=\sum_{n \geq 0} f(n, n, \ldots, n) t^{n} . \\
\Delta\left(z_{1}^{2} z_{2} t+3 \mathbf{z}_{1} \mathbf{z}_{2} \mathbf{t}+7 z_{1} z_{2} t^{2}+5 \mathbf{z}_{1}^{2} \mathbf{z}_{2}^{2} \mathbf{t}^{2}\right)=3 t+5 t^{2}
\end{gathered}
$$

Defined for any series.

We use diagonals to describe the generating functions of derived classes.

Example: Multinomials

Central diagonal

$$
\Delta \frac{1}{1-x-y}=\Delta \sum_{n \geq 0}(x+y)^{n}=\Delta \sum_{\ell \geq 0} \sum_{k \geq 0}\binom{\ell+k}{k} x^{k} y^{\ell}=\sum_{n \geq 0}\binom{2 n}{n, n} y^{n}
$$

Off center diagonals

$$
\Delta^{(r, s)} \frac{1}{1-x-y}=\sum_{n \geq 0}\binom{r n+s n}{r n, s n} y^{n}
$$

This example generalizes naturally to arbitrary dimension, using multinomials:

$$
\Delta^{r} \frac{1}{1-\left(z_{1}+\cdots+z_{d}\right)}=\sum_{n \geq 0}\binom{n\left(r_{1}+\cdots+r_{d}\right)}{n r_{1}, \ldots, n r_{d}} z_{d}^{n}
$$

Balanced word classes

$$
\mathcal{L}=\{\text { binary expansions of } n \mid n \equiv 0 \bmod 3 .\}
$$

Size $=$ length of string

$$
\mathcal{L}=\left(0+\left(1\left(01^{*} 0\right)^{*} 1\right)\right)^{*}
$$

Parameter $\chi(w)=\left(|w|_{0},|w|_{1}\right)=(\# 0 s$ in $w, \# 1 s$ in $w)$

$$
\mathcal{L}==\{w \in \mathcal{L} \mid \# 0 s=\# 1 s\}
$$

$=\{\epsilon, 1001,0011,0110,1100,010101,101010,11100001,10011001, \ldots\}$

$$
\begin{gathered}
L(x, y)=\frac{1}{1-\left(x+\frac{y^{2}}{1-\frac{x^{2}}{1-y}}\right)} \quad L_{=}(y)=\Delta L(x, y) \\
L_{=}(y)=\Delta\left(1+x+. .+y^{2}\left(1+2 x+4 x^{2}+. .\right)+y^{3}\left(x^{2}+2 x^{3}+5 x^{4}+. .\right)+\ldots\right) \\
=1+4 y^{2}+2 y^{3}+36 y^{4}+\ldots
\end{gathered}
$$

(size by half length)

Other subseries extraction as diagonal

 $F(\mathbf{z}, t)$ with series $\in K\left[\left[z_{1}, z_{1}^{-1}, \ldots, z_{d}, z_{d}^{-1}\right][[t]]\right.$:$$
\sum_{k \geq 0} \sum_{n \in \mathbb{Z}^{d}} f(\mathbf{n}, k) z^{n} t^{k}
$$

Constant Term

$$
\begin{aligned}
\operatorname{CT} F(\mathbf{z}, t) & =\sum_{n \geq 0} f(0,0, \ldots, 0, n) t^{n} \\
& =\Delta F\left(\frac{1}{z_{1}}, \ldots, \frac{1}{z_{d}}, z_{1} z_{2} \ldots z_{d} t\right)
\end{aligned}
$$

Positive Series

$$
\begin{aligned}
{\left[z_{1}^{\geq 0} \ldots z_{k}^{\geq 0}\right] F(\mathbf{x}, t) } & =\sum_{n \in \mathbb{N}^{d}} f(\mathbf{n}, k) \mathbf{z}^{n} t^{k} \\
& =\Delta\left(\frac{F\left(\frac{1}{z_{1}}, \ldots, \frac{1}{z_{d}}, z_{1} z_{2} \ldots z_{d} t\right)}{\left(1-z_{1}\right) \ldots\left(1-z_{k}\right)}\right)
\end{aligned}
$$

Excursions

Excursions: start and end at $(0,0)$ with steps from $S=\uparrow$:
$\mathcal{E}=\left\{w \in\{\uparrow, \downarrow, \leftarrow, \rightarrow\}^{*} \mid \chi(w)=(0,0)\right\}$

OGF for excursions:

$$
\begin{aligned}
\sum \operatorname{walk}_{\mathbb{Z}^{2}}{ }^{\frac{4}{n}}((0,0) \xrightarrow{n}(0,0)) t^{n} & =\left[x^{0} y^{0}\right] \frac{1}{1-t(x+1 / x+y+1 / y)} \\
& =\Delta \frac{1}{1-\operatorname{txy}(1 / x+x+1 / y+y))}
\end{aligned}
$$

The set of combinatorial classes with OGF a diagonal of \mathbb{N}-rational is smaller than you'd like. (does not include Catalan!) Differences of these classes are a wider class of series.

Walks confined to a quadrant - Reflection Principle

$$
\sum_{n \geq 0} \operatorname{walk}_{\mathbb{N} 2}^{+}((0,0) \xrightarrow{n}(0,0)) t^{n}
$$

$$
\begin{aligned}
& =\left[x^{1} y^{1}\right] \frac{x y-x / y+(x y)^{-1}+y / x}{(1-t(x+1 / x+y+1 / y))} \\
& =C T \frac{\left(x-\frac{1}{x}\right)\left(y-\frac{1}{y}\right)}{x y(1-t(x+1 / x+y+1 / y))} \\
& =\Delta \frac{x y\left(x-\frac{1}{x}\right)\left(y-\frac{1}{y}\right)}{1-t x y(x+1 / x+y+1 / y)} \\
& =\Delta \frac{\left(x^{2}-1\right)\left(y^{2}-1\right)}{1-t\left(x^{2} y+y+x y^{2}+x\right)} .
\end{aligned}
$$

Diagonals and combinatorial generating functions

- Univariate algebraic functions are diagonals of bivariate rationals.
- D-finite functions
- Algebraic functions are D-finite
- Diagonals of D-finite functions are D-finite
- OGFs of derived subclasses of algebraic and S-regular
- Reflection principle - walks in Weyl chambers (from representation theory)

Lingering questions
Are combinatorial D-finite functions always diagonals? Are D-finite classes always (in bijection with) a derived class of an algebraic or regular? algebraic combination of derived classes?

Taxonomy of Generating Functions

Classic results of great utility to the combinatorialist

- Nature and type of singularities for series solutions of different equations types
- Behaviour near the singularities
- Asymptotic form of solutions for algebraic and linear ODE equations
- Results on series with positive coefficients (Pringsheim, Polya Carlson, Fatou,...) $F(z)$ converges inside the unit disc \Longrightarrow it is a rational function or transcendental over $\mathbb{Q}(z)$.

Transcendency

Transcendental OGF \Longrightarrow class has no algebraic specification.
Trancendancy criterion

$$
\left[z^{n}\right] F(z) \sim C \mu^{n} n^{s}, \quad s \notin \mathbb{Q} \backslash\{-1,-2, \ldots\}
$$

$$
\mathcal{C}=\left\{\left.u \in\{a, b, c\}^{*}| | u\right|_{a} \neq|u|_{b} \text { or }|u|_{a} \neq|u|_{c}\right\}
$$

$$
\begin{aligned}
\{a, b, c\}^{*} \backslash \mathcal{C} & =\left\{\left.u \in\{a, b, c\}| | u\right|_{a}=|u|_{b}=|u|_{c}\right\} \\
3^{n}-c_{n} & =\binom{3 n}{n, n, n} \\
\underbrace{\sum 3^{n} z^{n}}_{\text {rational }}-\sum c_{n} z^{n} & =\underbrace{\sum \underbrace{\binom{3 n}{n, n, n}}_{\sim c 27^{n} n^{-1}} z^{n}}_{\text {transcendental }}
\end{aligned}
$$

$\Longrightarrow \sum c_{n} z^{n}$ transcendental

Conclusion

(1) Dictionary between combinatorial specification and OGF functional equations
(2) 3 families of combinatorial classes: S-regular, algebraic, derived subclasses
(3) Use results on the nature of solutions to help sort objects and make effective computation
(9) Diagonal operator is used to describe many combinatorial classes

$$
\Delta F(\mathbf{z}, t)=\Delta \sum_{k \geq 0} \sum_{n \in \mathbb{Z}^{d}} f(\mathbf{n}, k) \mathbf{z}^{n} t^{k}:=\sum_{n \geq 0} f(n, n, \ldots, n) t^{n} .
$$

(5) Christol's Conjecture: Every G-series is a diagonal of a rational function
(0) Next: Given a multivariable rational function, determine the coefficient asymptotics of a diagonal.

Bibliography

- Analytic Combinatorics, Flajolet Sedgewick
- Random Walk in a Weyl Chamber, Ira M. Gessel and Doron Zeilberger Proceedings of the American Mathematical Society Vol. 115, No. 1 (May, 1992), pp. 27-31
- R. Stanley. Enumerative Combinatorics, volume 2. Cambridge University Press, 1999.
- Analytic models and ambiguity of context-free languages Philippe Flajolet, Theoretical Computer Science Volume 49, Issues 23, 1987, Pages 283-309

II. Singularities and Critical Points

Objective

Systematic methods to determine asymptotic estimates for the number of objects of size n in combinatorial class \mathcal{C}.

Understand the singularity structure of its OGF $C(z)$
Part II: Focus on diagonals of multivariable rationals (e.g. OGFs of derived classes)

$$
\Delta \frac{G(\mathbf{z}, t)}{H(\mathbf{z}, t)}=\Delta \sum_{k \geq 0} \sum_{\mathbf{n} \in \mathbb{Z}^{d}} f(\mathbf{n}, k) \mathbf{z}^{\mathrm{n}} t^{k}:=\sum_{n \geq 0} f(n, n, \ldots, n) t^{n} .
$$

Analytic Strategy

- Relate the singularities of $\frac{G(z, t)}{H(z, t)}$ and $\Delta \frac{G(z, t)}{H(z, t)}$.
- Study the geometry of the variety of points annihilating H.

Univariate Singularity

Poles

$$
F(z)=\frac{1}{\left(1-z^{3}\right)(1-4 z)^{2}\left(1-5 z^{4}\right)}
$$

$$
1+8 z+54 z^{2}+304 z^{3}+1599 z^{4}+7928 z^{5}+O\left(z^{6}\right)
$$

Im z

Poles of $F(z)$

Value of $|F(z)|$

Branch Point Singularity

$$
C(z)=\frac{1-\sqrt{1-4 z}}{2 z} \quad 1+z+2 z^{2}+5 z^{3}+14 z^{4}+42 z^{5}+132 z^{6}+O\left(z^{7}\right)
$$

Exponential growth and the radius of convergence

$$
F(z)=\sum_{n \geq 0} f_{n} z^{n} \in \mathbb{R}_{>0}[[z]]
$$

\Longrightarrow there is a positive real valued singular point $\rho \in \mathbb{R}_{>0}$ on the circle of convergence. (Pringshheim)

Exponential growth

$$
\begin{gathered}
\mu:=\limsup _{n \rightarrow \infty} f_{n}{ }^{1 / n} \\
" f_{n} \sim \kappa \mu^{n} n^{\alpha \prime \prime}
\end{gathered}
$$

$$
R O C(F(z))=\rho \Longrightarrow \mu=\rho^{-1}
$$

Convergence and the Exponential Growth

The radius of convergence $F(z)=\rho$
\Longrightarrow exponential growth of $\left[z^{n}\right] F(z)=\rho^{-1}$.

$$
\frac{1}{\left(1-z^{3}\right)(1-4 z)^{2}\left(1-5 z^{4}\right)}
$$

$$
\lim _{n \rightarrow \infty} r_{n}^{1 / n}=4
$$

$$
\frac{1-\sqrt{1-4 z}}{2 z}
$$

$\lim _{n \rightarrow \infty} c_{n}^{1 / n}=4$

The first principle of coefficient asymptotics

The location of singularities of an analytic function determines the exponential order of growth of its Taylor coefficients.

We connect the boundary of convergence and exponential growth.

Preview: An analogy

Here is a rough idea of what the multivariable case looks like.

Univariate Rationals

$$
\begin{gathered}
F(z)=\frac{G(z)}{H(z)}=\sum f_{n} z^{n} \\
f_{n} \sim C \mu^{n} n^{\alpha}
\end{gathered}
$$

dominant singularity: $\rho \in \mathbb{C}$ on circle of convergence satisfying $H(\rho)=0$

$$
\mu=|\rho|^{-1}
$$

Multivariable Rationals

$$
\begin{gathered}
\Delta \frac{G\left(z_{1}, \ldots, z_{d}\right)}{H\left(z_{1}, \ldots, z_{d}\right)}=\sum f_{n n \ldots n} z_{d}^{n} \\
f_{n n \ldots n} \sim C \mu^{n} n^{\alpha}
\end{gathered}
$$

minimal critical point: $\left(\rho_{1}, \ldots, \rho_{d}\right)$ on the boundary of convergence satisfying $H\left(\rho_{1} \ldots, \rho_{d}\right)=0+$ other equations.

$$
\mu=\left|\rho_{1} \ldots \rho_{d}\right|^{-1}
$$

Multivariable Series

Convergence of multivariable series

- View the series as an iterated sum.

$$
\sum_{n_{d}}\left(\ldots\left(\sum_{n_{1}} a\left(n_{1}, \ldots, n_{d}\right) z_{1}^{n_{1}}\right) \ldots\right) z_{d}^{n_{d}}
$$

- The domain of convergence, denoted $\mathcal{D} \subseteq \mathbb{C}^{d}$, is the interior of the set of points where the series converges absolutely.
- The polydisk of a point z is the domain

$$
D(\mathbf{z})=\left\{\mathbf{z}^{\prime} \in \mathbb{C}^{d}:\left|z_{i}^{\prime}\right| \leq\left|z_{i}\right|, 1 \leq i \leq d\right\} .
$$

- The torus associated to a point is

$$
T(\mathbf{z})=\left\{\mathbf{z}^{\prime} \in \mathbb{C}^{d}:\left|z_{i}^{\prime}\right|=\left|z_{i}\right|, 1 \leq i \leq d\right\} .
$$

- A domain of convergence is multicircular.

$$
\mathbf{z}=\left(z_{1}, \ldots, z_{d}\right) \in \mathcal{D} \Longrightarrow T(\mathbf{z}) \subseteq \mathcal{D} \Longrightarrow\left(\omega_{1} z_{1}, \ldots, \omega_{d} z_{d}\right) \in \mathcal{D}, \quad\left|\omega_{k}\right|=1
$$

What is a singularity of G / H ?

The set of singularities of $G(z) / H(z)$ is the algebraic variety

$$
\mathcal{V}:=\{\mathbf{z}: H(z)=0\} .
$$

minimal points (working definition)
The set of minimal points of a series expansion of F is the set of singular points on the boundary of convergence.

$$
\mathcal{V} \cap \partial \mathcal{D}
$$

A point \mathbf{z} is strictly minimal if $\mathcal{V} \cap D(\mathbf{z})=\{\mathbf{z}\}$

Example: 1D

Definitions

The set of minimal points of a series development of F is the set of singular points on the boundary of convergence.

$\mathcal{V} \cap \partial \mathcal{D}$

A point \mathbf{z} is strictly minimal if $\mathcal{V} \cap D(\mathbf{z})=\{\mathbf{z}\}$

Im z

$$
\begin{gathered}
H(z)=\left(1-z^{3}\right)(1-4 z)^{2}\left(1-5 z^{4}\right) \\
\partial \mathcal{D}=\{z:|z|=1 / 4\}, \mathcal{V}=\left\{1 / 4,1, w, w^{2},\left(\frac{1}{5}\right)^{1 / 4}\right\} \\
\text { minimal point: } \mathcal{V} \cap \mathcal{D}=\{1 / 4\} \text {, strictly minimal. }
\end{gathered}
$$

Example: $F(x, y)=\frac{1}{1-x-y}$
Taylor expansion: $\sum_{k, \ell}\binom{k+\ell}{k} x^{k} y^{\ell}$

Convergence at (x, y)
\Longrightarrow convergence at $(|x|,|y|)$
$F(|x|,|y|)=\frac{1}{1-|x|-|y|} \Longrightarrow|x|+|y|<1$

$$
\partial \mathcal{D}=\left\{(x, y) \in \mathbb{C}^{2}| | x|+|y|=1\}\right.
$$

$$
\mathcal{V}=\{(z, 1-z) \mid z \in \mathbb{C}\}
$$

Minimal points $\mathcal{V} \cap \partial \mathcal{D}$

$$
\left\{(z, 1-z)||z|+|1-z|=1\}=\left\{(x, 1-x) \mid x \in \mathbb{R}_{>0}\right\}\right.
$$

All strictly minimal.

A first formula for exponential growth for diagonal coefficients

Convergence and exponential growth

Given series $\sum a(\mathbf{n}) \mathbf{z}^{\mathrm{n}}$ and $\mathbf{z} \in \mathcal{D}$,

$$
\begin{gathered}
\sum_{n \in \mathbb{N}^{d}} a(\mathbf{n})\left|z_{1}\right|^{n_{1}}\left|z_{2}\right|^{n_{2}} \ldots\left|z_{d}\right|^{n_{d}} \text { is convergent (absolute conv). } \\
\Longrightarrow \sum_{n \in \mathbb{N}} a(n, n, \ldots, n)\left|z_{1}\right|^{n}\left|z_{2}\right|^{n} \ldots\left|z_{d}\right|^{n} \text { is convergent (subseries). } \\
=\sum_{n} a(n, n, \ldots, n)\left|z_{1} z_{2} \ldots z_{d}\right|^{n}
\end{gathered}
$$

$\Longrightarrow t=\left|z_{1} z_{2} \ldots z_{d}\right|$ is within the radius of convergence of $\Delta F(\mathbf{z})$.

$$
\begin{gathered}
\mu \leq \limsup _{n \rightarrow \infty}|a(n, n, \ldots, n)|^{1 / n} \leq\left|z_{1} z_{2} \ldots z_{d}\right|^{-1} \quad \text { with } \forall \mathbf{z} \in \overline{\mathcal{D}} \\
\leq \inf _{\left(z_{1}, \ldots, z_{d}\right) \in \overline{\mathcal{D}}}\left|z_{1} z_{2} \ldots z_{d}\right|^{-1} .
\end{gathered}
$$

Thm: Under conditions of non-triviality, the infimum is reached at a minimal point:

$$
\begin{equation*}
\mu=\inf _{z \in \partial \mathcal{D} \cap \mathcal{V}}\left|z_{1} \ldots z_{d}\right|^{-1} \tag{5}
\end{equation*}
$$

Example: Binomials $F(x, y)=(1-x-y)^{-1}$

Minimal points: $\partial \mathcal{D} \cap \mathcal{V}=\left\{(x, 1-x) \in \mathbb{R}^{2}: 0<x<1\right\}$.
$\mu=\limsup _{n \rightarrow \infty} a(n, n)^{1 / n}=\inf _{(x, y) \in \mathcal{D} \cap \mathcal{D}}|x y|^{-1}=\inf _{x \in \mathbb{R}: 0 \leq x \leq 1}(x(1-x))^{-1}=4$.
We can consider non-central diagonals.

$$
\limsup _{n \rightarrow \infty} a_{r n s n}^{1 / n}=\inf _{(x, y) \in \mathcal{D}}\left|x^{r} y^{s}\right|^{-1}=\inf _{x \in \mathbb{R}}\left(x^{r}(1-x)^{s}\right)^{-1} .
$$

This is minimized at $x=\frac{r}{r+s}$.
The exponential growth:

$$
\mu=\left(\left(\frac{r}{r+s}\right)^{r}\left(\frac{s}{r+s}\right)^{s}\right)^{-1} .
$$

We got lucky here - we could easily write y in terms of x. What to do in general?

Computing critical points

The height function h

Astuce
We convert the multiplicative minimization to a linear minimization using logarithms.

To minimize $\left|z_{1} \ldots z_{d}\right|^{-1}$, minimize:

$$
-\log \left|z_{1} \ldots z_{d}\right|=\underbrace{-\log \left|z_{1}\right|-\cdots-\log \left|z_{d}\right|}_{\text {linear in } \log \left|z_{i}\right|}
$$

Define a function $h: \mathcal{V}^{*} \rightarrow \mathbb{R}$:

$$
\mathcal{V}^{*}=\mathcal{V} \backslash\left\{z: z_{1} \ldots z_{d} \neq 0\right\}
$$

$$
\left(z_{1}, \ldots, z_{d}\right) \mapsto-\log \left|z_{1}\right|-\cdots-\log \left|z_{d}\right| .
$$

The map h is smooth \Longrightarrow minimized at its critical points. When $r=(1, \ldots, 1)$, the critical points are solutions to the critical point equations:

$$
H(\mathbf{z})=0, \quad z_{1} \frac{\partial H(\mathbf{z})}{\partial z_{1}}=z_{j} \frac{\partial H(\mathbf{z})}{\partial z_{j}}, 2 \leq j \leq d .
$$

Critical points

Critical points are potential locations of minimizers of $\left|z_{1} \ldots z_{d}\right|^{-1}$. In the most straightforward cases it suffices to compare the values of this product and select the critical point that is the global minimizer.

- A critical point is strictly minimal if it is on the boundary of convergence of the series.
- In these generating functions the asymptotics is driven by a finite number of isolated minimal points. Simplest case.

Visualize Critical Points

Critical points of $(1-x-y)^{-1}$ for $r=(1,1)$
(1) $\rho \in \mathcal{V} \cap \partial \mathcal{D}$

$$
\begin{array}{r}
\rho=(1 / 2,1 / 2) \\
h(x, y)=-2 \log 2 \\
\lim _{n \rightarrow \infty}\binom{(n n}{n}^{1 / n}=4
\end{array}
$$

(3) minimize $h(x, y)=-\log |x|-\log |y|$
(0) $\mu=\left|\rho_{1} \rho_{2}\right|^{-1}$

$h(x, y)=-2 \log 22|\log | y \mid$

$$
(x, y) \mapsto(-\log |x|,-\log |y|)
$$

Trinomial $(1-x-y-z)^{-1}$

Critical points
(1) $\rho \in \mathcal{V} \cap \partial \mathcal{D} \quad \rho=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$
(2) minimize $h(x, y, z)=-\log |x|-\log |y|-\log |z|$

$$
h(x, y, z)=3 \log 3
$$

(3) $\mu=\left|\rho_{1} \rho_{2} \rho_{3}\right|^{-1}$
$\lim _{n \rightarrow \infty}\binom{3 n}{n, n, n}^{1 / n}=27$

Non-central diagonals

If we want a non-central diagonal, we want to minimize

$$
\left|z_{1}^{r_{1}} \ldots z_{d}^{r_{d}}\right|^{-1} \quad \text { in } \quad \partial \mathcal{D} \cap \mathcal{V} .
$$

Instead take height function here is

$$
\left(z_{1}, \ldots, z_{d}\right) \mapsto-r_{1} \log \left|z_{1}\right|-\cdots-r_{d} \log \left|z_{d}\right| .
$$

The equations change. For example, in 2D, diagonal (r, s), solve the equations:

$$
H(x, y)=0, \quad s x \frac{\partial H(x, y)}{\partial x}=r y \frac{\partial H(x, y)}{\partial y} .
$$

Critical point depends on the diagonal ray

Delannoy Numbers
$d(r n, s n):=\left[x^{r n} y^{s n}\right](x+y+x y)^{n}$

| (r, s) | $-r \log \|x\|-s \log \|y\|$ | ρ |
| :---: | :---: | :---: | :---: |
| $(1,1)$ | $--2)$ | $\left(\frac{1}{\sqrt{2}-1}, \frac{1}{\sqrt{2}-1}\right)$ |
| $(5,2)$ | $\left(\frac{1}{5}, \frac{2}{3}\right)$ | |

Summary: To Find Critical Points

Given: $G(x, y) / H(x, y)=\sum f_{k, \ell} x^{j} y^{k}$, irreducible H

$$
(r, s) \in \mathbb{R}_{>0}^{2}
$$

Determine: $\mu=\lim \sup _{n \rightarrow \infty} f_{r n, s n}^{1 / n}$, critical points ρ

- Find solutions $\{\rho\}$ to the (r, s)-critical point equations. Hint: Find Gröbner basis of

$$
[H, s * x * \operatorname{diff}(H, x)-r * y * \operatorname{diff}(H, y)]
$$

- Ensure $T(\rho) \subset \partial \mathcal{D}$
- Set $\mu=\min \left|\rho_{1} \ldots \rho_{d}\right|^{-1}$ among those solutions with no 0 coordinate.
- We use the set of such ρ to find the sub-exponential growth (tomorrow)
- Nontriviality requirement: ρ to be smooth as a function of (r, s) near where you want it.

Balanced Binary Words

Let $\mathcal{L}=$ Binary words over $\{0,1\}$ with no run of 1 s of length 3 .

$$
\mathcal{L}=(\epsilon+1+11) \cdot(0 \cdot(\epsilon+1+11))^{*}
$$

Parameter: $\chi(w)=\left(|w|_{0},|w|_{1}\right)$

$$
\begin{aligned}
& \mathcal{L}==\{w \in \mathcal{L} \mid \chi(w)=(n, n)\} \\
& L_{=}(y)=\Delta \frac{1+x+x^{2}}{1-y\left(1+x+x^{2}\right)}
\end{aligned}
$$

- GB of Critical point equations: $\left[x^{2}-1, x+3 y-2\right]$
- two solutions: $(1,1 / 3)(-1,1)$
- $\mu=\min \left|\rho_{1} \ldots \rho_{d}\right|^{-1}(1,1 / 3) \mapsto 3(-1,1) \mapsto 1$
- BUT $(1,1) \in T(-1,1) \Longrightarrow(-1,1)$ is not a minimal point because $(1,1)$ outside of domain of convergence.

$$
\left[y^{n}\right] L_{=}(y) \rightarrow \kappa 3^{n} n^{\alpha}
$$

Visualize the boundary

Simple Excursions

Let \mathcal{E} be the set of simple excursions in the entire plane, that is walks that start and end at the origin, taking unit steps $\{\uparrow, \downarrow, \leftarrow, \rightarrow\}$

$$
e(n)=\left[x^{0} y^{0}\right](x+1 / x+y+1 / y)^{n}
$$

We can deduce:

$$
E(z)=\Delta \frac{1}{1-z x y\left(x+\frac{1}{x}+y+\frac{1}{x}\right)}
$$

Any critical point $\rho=(x, y, z)$ will have $z=\frac{1}{x y(x+1 / x+y+1 / y)}$ from $H=0$.
Critical points: $(1,1,1 / 4),(-1,-1,-1 / 4)$

$$
e(2 n)^{1 / 2 n}=\inf _{\rho \in \partial \mathcal{D} \cap \mathcal{V}}|x y z|^{-1}=\inf _{0 \leq x, y \leq 1}|x+1 / x+y+1 / y|=4^{2}
$$

Excursions for any finite step set

This phenomena is general. Let \mathcal{S} be any weighted finite 2D step set

$$
\begin{aligned}
S(x, y) & =\sum_{(j, k) \in \mathcal{S}} w(j, k) x^{j} y^{k} \\
e(n) & =\left[x^{0} y^{0}\right] S(x, y)^{n}
\end{aligned}
$$

We can deduce:

$$
E(z)=\Delta \frac{1}{1-z x y S(1 / x, 1 / y)}
$$

Any critical point $\rho=(x, y, z)$ will have $z=\frac{1}{x y S(1 / x, 1 / y)}$ from $H=0$.

$$
\limsup _{n \rightarrow \infty} e(n)^{\frac{1}{n}}=\inf _{\rho \in \partial \mathcal{D} \cap \mathcal{V}}|x y z|^{-1}=\inf _{\rho \in \mathcal{D}}|S(1 / x, 1 / y)|
$$

The minimum is found using the critical point eqn.

What if H factors?

Suppose H factors nontrivially into squarefree factors:

$$
H=H_{1} \ldots H_{k}
$$

- CASE A: $H_{j}(\rho)=0 \Longrightarrow H_{k}(\rho) \neq 0$ for $j \neq k$: OK.
- CASE B: Must decompose \mathcal{V} into strata, and find critical points for each stratum independently. ${ }^{* *}$ Important to keep track of the co-dimension of the stratum for later.**

Walks in the quarter plane that end anywhere

Let $\mathcal{S}=\{\nwarrow, \rightarrow, \downarrow\} . \mathcal{T}=$ walks start at $(0,0)$ end anywhere. Using a reflection principle argument:

$$
\begin{equation*}
T(z)=\Delta \frac{\left(1-y^{2} / x+y^{3}-x^{2} y^{2}+x^{3}-x^{2} / y\right)}{(1-\operatorname{zxy}(1 / x+x / y+y))(1-x)(1-y)} \tag{6}
\end{equation*}
$$

Critical points
We divide \mathcal{V}_{H} into strata and we determine critical points from each of them.

Image of \mathcal{V} under $(x, y, z) \mapsto(|x|,|y|,|z|)$

Image of \mathcal{V} under $(x, y, z) \mapsto(-\log |x|,-\log |y|,-\log |z|)$

Stratum
S_{1}
Critical points
$\left(w^{2}, w, w / 3\right),\left(w, w^{2}, w^{2} / 3\right)$
value of $|x y z|^{-1}$
$1 / 3$
S_{12}
S_{23}
S_{123}
(1, 1, 1/3)
$1 / 3$

A lattice path enumeration problem

Let $\mathcal{S}=\{\nwarrow, \rightarrow, \downarrow\} . \mathcal{T}=$ walks start at $(0,0)$ end anywhere. Using a reflection principle argument:

$$
T(z)=\Delta \frac{\left(1-y^{2} / x+y^{3}-x^{2} y^{2}+x^{3}-x^{2} / y\right)}{(1-\operatorname{zxy}(1 / x+x / y+y))(1-x)(1-y)}
$$

We conclude: Three critical points:

$$
\left(w, w^{2}, w^{2} / 3\right),\left(w^{2}, w, w / 3\right),(1,1,1 / 3)
$$

(Potential for periodicity..)
Exponential growth: $t_{n} \sim C 3^{n} n^{\alpha}$.
Tomorrow: find C, α.

Next..

Determine how each contributing critical point modulates the dominant exponential term by a subexponential factor.

Bibliography

Analytic Combinatorics in Several Variables
Pemantle and Wilson 2013
III. Diagonal Asymptotics

The problem

Diagonal Asymptotics

Given:

$$
F(\mathbf{z})=G(\mathbf{z}) / H(\mathbf{z})=\sum f(\mathbf{n}) \mathbf{z}^{\mathrm{n}}
$$

Determine the asymptotics of $f(n, n, \ldots, n)$ as $n \rightarrow \infty$

- Singular Variety $\mathcal{V}=\{\mathbf{z} \mid H(\mathbf{z})=0\}$
- Minimal Points: $\partial \mathcal{D} \cap \mathcal{V}$
- Critical points minimize: $\left|\rho_{1} \ldots \rho_{d}\right|^{-1}$ (with value μ, say)
- Minimal critical point ρ contained in both

$$
\underbrace{-\log \left|z_{1}\right|-\cdots-\log \left|z_{d}\right|=\log \mu}_{\text {a hyperplane }} \quad \rho \in \partial \mathcal{D} \cap \mathcal{V}
$$

Balanced Binary Words

Let $\mathcal{L}=$ Binary words over $\{0,1\}$ with no run of 1 s of length 3 .

$$
\mathcal{L}=(\epsilon+1+11) \cdot(0 \cdot(\epsilon+1+11))^{*}
$$

Parameter: $\chi(w)=\left(|w|_{0},|w|_{1}\right)$

$$
\begin{aligned}
& \mathcal{L}==\{w \in \mathcal{L} \mid \chi(w)=(n, n)\} \\
& L_{=}(y)=\Delta \frac{1+x+x^{2}}{1-y\left(1+x+x^{2}\right)}
\end{aligned}
$$

- GB of Critical point equations: $\left[x^{2}-1, x+3 y-2\right]$
- two solutions: $(1,1 / 3)(-1,1)$
- $\mu=\min \left|\rho_{1} \ldots \rho_{d}\right|^{-1}(1,1 / 3) \mapsto 3 \quad(-1,1) \mapsto 1$
- BUT $(1,1) \in T(-1,1) \Longrightarrow(-1,1)$ is not a minimal point because $(1,1)$ outside of domain of convergence.

$$
\left[y^{n}\right] L_{=}(y) \rightarrow \kappa 3^{n} n^{\alpha}
$$

First Principle of Coefficient Asymptotics

The location of singularities of an analytic function determines the exponential order of growth of its Taylor coefficients.

We connect the boundary of convergence and exponential growth.

Second Principle of Coefficient Asymptotics

The nature of the singularities determines the way the dominant exponential term in coefficients is modulated by a subexponential factor.

Nature $=$ geometry of the singular variety at the critical point.

The problem

Diagonal Asymptotics

Given:

$$
F(\mathbf{z})=G(\mathbf{z}) / H(\mathbf{z})=\sum f(\mathbf{n}) \mathbf{z}^{\mathrm{n}}
$$

Determine the asymptotics of $f(n, n, \ldots, n)$ as $n \rightarrow \infty$

- Singular Variety $\mathcal{V}=\{\mathbf{z} \mid H(\mathbf{z})=0\}$
- Minimal Points: $\partial \mathcal{D} \cap \mathcal{V}$
- Critical points minimize: $\left|\rho_{1} \ldots \rho_{d}\right|^{-1}$ (with value μ, say)
- Minimal critical point ρ satisfies

$$
\underbrace{-\log \left|\rho_{1}\right|-\cdots-\log \left|\rho_{d}\right|=\log \mu}_{\text {a hyperplane }} \quad \rho \in \partial \mathcal{D} \cap \mathcal{V}
$$

What are the geometries we can handle?

Behaviour at critical point ρ

$$
-\log \left|\rho_{1}\right|-\cdots-\log \left|\rho_{d}\right|=\log \mu \quad \rho \in \partial \mathcal{D} \cap \mathcal{V}
$$

Smooth Point

THM A (Hörmander)
e.g. excursions

Transverse Multiple THM B (Pemantle and Wilson) Point
e.g. general walks

Arrangement Point Decompose F;THM B
e.g. vector partitions
polytope dilation

Univariate Case

Cauchy Integral Formula

The heart of analytic combinatorics.

Theorem

Suppose that $F(z)$ is analytic at the origin, with Taylor series expansion $F(z)=\sum_{n \geq 0} f(n) z^{n}$. Then for all $n \geq 0$,

$$
\begin{equation*}
f(n)=\frac{1}{(2 \pi i)} \int_{\gamma} \frac{F(z)}{z^{n+1}} d z \tag{7}
\end{equation*}
$$

where γ is a counterclockwise circle about the origin sufficiently small that $F(z)$ is analytic in its interior and is continuous on it.

Strategies

(1) Estimate integral by curvelength \times max on curve
(2) Use someone else's estimate.

Transfer Theorem

Theorem

Assume that, with the sole exception of the singularity $z=1, F(z)$ is analytic in the domain

$$
\Omega=\{z| | z|\leq 1+\nu,|\arg (z-1)| \geq \phi\}
$$

for some $\nu>0$ and $0<\phi<\pi / 2$. Assume further that as z tends to 1 in Ω,

$$
F(z)=(1-z)^{\alpha} \log \left(\frac{1}{1-z}\right)^{\beta} O\left(\left(\log \frac{1}{1-z}\right)^{-1}\right)
$$

for some real α and β such that $\alpha \notin\{0,1,2, \ldots\}$. Then

$$
\left[z^{n}\right] F(z)=\frac{n^{-\alpha-1}}{\Gamma(-\alpha)} \log ^{\beta} n\left(O\left(\log ^{-1} n\right)\right) .
$$

Ref: Flajolet Odlyzko, 1990

Rewrite as a sum of residues

$$
0=\int_{\gamma} F(z) / z^{n+1} d z
$$

$$
=\int_{\gamma_{R}} F(z) / z^{n+1} d z+\underbrace{\int_{\gamma_{0}} F(z) / z^{n+1} d z}_{f(n)}+\sum_{s \in\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}} \int_{\gamma_{s}} F(z) / z^{n+1}
$$

$$
=O\left(R^{-n}\right)+f(n)+\sum_{s \in\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}} \int_{\gamma_{s}} F(z) / z^{n+1}
$$

$$
f(n)=\sum_{s \in\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}} \int_{\gamma_{s}} F(z) / z^{n+1}+O\left(R^{-n}\right)
$$

Key Multivariable Theorem

Multidimensional Cauchy Integrals

Theorem
Fix d and let $\mathbf{z}=\left(z_{1}, \ldots, z_{d}\right)$. Suppose that $F(\mathbf{z}) \in \mathbb{C}(\mathbf{z})$ is analytic at the origin, with Taylor series expansion $F(\mathbf{z})=\sum_{\mathbf{n} \in \mathbb{N}^{d}} f(\mathbf{n}) \mathbf{z}^{\mathrm{n}}$ Then for all $n \geq 0$,

$$
f(\mathbf{n})=\frac{1}{(2 \pi i)^{d}} \int_{T} \frac{F(\mathbf{z})}{\left(z_{1} \ldots z_{d}\right)^{n}} \cdot \frac{d z_{1} \ldots, d z_{d}}{z_{1} \ldots z_{d}},
$$

where T is the torus $T(\epsilon)=T\left(\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{d}\right)$ has each ϵ_{j} sufficiently small such that $F(\mathbf{z})$ is analytic in the interior of $D(\epsilon)$, and is analytic on the boundary.

Smooth Point Asymptotics

Case 1: Smooth point asymptotics

The minimal critical point ρ is a smooth point if $\partial_{k} H(\rho) \neq 0$ for all k.

Example

The point $(1,1,1 / 3)$ is a smooth critical point for $H(x, y)=1-y\left(1+x+x^{2}\right)$:

Compute $H_{x}(x, y)=y(1+2 x), \quad H_{y}=\left(1+x+x^{2}\right)$
Verify $H_{x}(1,1,1 / 3)=1 \neq 0, H_{y}(1,1,1 / 3)=3 \neq 0$.

Tool: Fourier Laplace Integrals

The strategy is to rewrite Cauchy Integrals as Fourier-Laplace integrals:

$$
\int_{\mathcal{N}} A(\mathbf{t}) e^{-\lambda \phi(t)} d t_{1} \ldots d t_{d}
$$

with the functions A and ϕ analytic over their domain of integration, and \mathcal{N} is some neighbourhood in \mathbb{R}^{d}.
As we saw yesterday, often asymptotic estimate for these integrals are known.

Smooth Point: THM A

Suppose $A: \mathbb{C}^{d} \rightarrow \mathbb{C}$ and $\phi: \mathbb{C}^{d} \rightarrow \mathbb{C}$ are both smooth in a neighbourhood \mathcal{N} of $\mathbf{0}$ and that

- $\phi(0)=0$
- ϕ has a critical point at $\mathbf{t}=\mathbf{0}$, i.e., that $(\nabla \phi)(\mathbf{0})=\mathbf{0}$, and that the origin is the only critical point of ϕ in \mathcal{N};
- the Hessian matrix \mathcal{H} of ϕ has $i, j^{t h}$ entry $\partial_{i} \partial_{j} \phi(\mathbf{t})$, and at $\mathbf{t}=\mathbf{0}$ is non-singular;
- the real part of $\phi(\mathbf{t})$ is non-negative on \mathcal{N}.

Then for any integer $M>0$ there exist computable constants C_{0}, \ldots, C_{M} such that

$$
\int_{\mathcal{N}} A(\mathbf{t}) e^{-n \phi(\mathrm{t})} d \mathbf{t}=\left(\frac{2 \pi}{n}\right)^{d / 2} \operatorname{det}(\mathcal{H})^{-1 / 2} \cdot \sum_{k=0}^{M} C_{k} n^{-k}+O\left(n^{-M-1}\right)
$$

$C_{0}=A(\mathbf{0})$
If $A(\mathbf{t})$ vanishes to order L at 0 then $C_{0}=\cdots=C_{\left\lfloor\frac{L}{2}\right\rfloor}=0$.

Balanced Binary Words with no Runs

We complete the asymptotic analysis of the number of balanced binary words over $\{0,1\}$ such that no word has a run of 1 s of length 3 or longer. The generating function by halflength is

$$
\Delta \frac{1+x+x^{2}}{1-y\left(1+x+x^{2}\right)}
$$

There is a minimal critical point at $\rho=(1,1 / 3)$.

Strategy

(1) Remark $\left[x^{n} y^{n}\right]\left(1+x+x^{2}\right)\left(y\left(1+x+x^{2}\right)\right)^{n}=\left[x^{n}\right]\left(1+x+x^{2}\right)^{n+1}$
(2) Write Cauchy Integral in one smaller dimension
(3) Rewrite as a sum of integrals around the singularities
(4) For each integral, move the singularity to 0 in a way that converts it to a Fourier-Laplace integral.

Rewriting a Cauchy Integral as Fourier-Laplace Integral

$$
\begin{aligned}
& {\left[x^{n}\right]\left(1+x+x^{2}\right)^{n+1}} \\
& {\left[x^{n}\right] A(x) B(x)^{n}=\frac{1}{2 \pi i} \int_{|x|=\epsilon} \frac{A(x) B(x)^{n}}{x^{n+1}} d x} \\
& =\frac{1}{2 \pi i} \int_{|x-\rho|=\epsilon} \frac{A(x) B(x)^{n}}{x^{n+1}} d x+O\left((\rho+\epsilon)^{-1}\right) \\
& =\frac{1}{2 \pi i} \int_{\mathcal{N}} \frac{A\left(\rho e^{i t}\right) B\left(\rho e^{i t}\right)^{n}}{\rho^{n+1} e^{i t(n+1)}} i \rho e^{i t \rho} d t \\
& =\frac{\rho^{-n} B(\rho)^{n}}{2 \pi} \int_{\mathcal{N}} A\left(\rho e^{i t}\right) \frac{B\left(\rho e^{i t}\right)^{n}}{B(\rho)^{n}} e^{-i t(n+1)} d t \\
& =\frac{\rho^{-n} B(\rho)^{n}}{2 \pi} \int_{\mathcal{N}} A\left(\rho e^{i t}\right) e^{-n \phi(t)} d t
\end{aligned}
$$

with $\phi(t)=\log \frac{B(\rho)}{B\left(\rho e^{t}\right)}+i t . A: \mathbb{C}^{d} \rightarrow \mathbb{C}$ and $\phi: \mathbb{C}^{d} \rightarrow \mathbb{C}$ are both smooth in a neighbourhood \mathcal{N} of $\mathbf{0} ; \phi$ has a critical point at $\mathbf{t}=\mathbf{0}$, the origin is the only critical point of ϕ in \mathcal{N};

Balanced Binary Words with no Runs

We complete the asymptotic analysis of the number of balanced binary words over $\{0,1\}$ such that no word has a run of 1 s of length 3 or longer. The generating function by halflength is

$$
\Delta \frac{1+x+x^{2}}{1-y\left(1+x+x^{2}\right)}
$$

There is a minimal critical point at $\rho=(1,1 / 3)$.
Strategy
(1) Remark $\left[x^{n} y^{n}\right]\left(y\left(1+x+x^{2}\right)\right)^{n}=\left[x^{n}\right]\left(1+x+x^{2}\right)^{n}$
(2) Write Cauchy Integral in one smaller dimension
(3) Rewrite as a sum of integrals around the singularities
(4) For each integral, move the singularity to 0 in a way that converts it to a Fourier-Laplace integral.

$$
3 \frac{3^{n}}{\sqrt{2 \pi n}}
$$

How to apply to more general cases

The first step of the computation used

$$
H=1-y B(x) \Longrightarrow y=B(x)^{-1} \text { on } \mathcal{V}
$$

If the variety \mathcal{V} is smooth, and if $\partial_{d+1} H(\rho) \neq 0$, then by the implicit function theorem there is a parametrization $z_{d}=\Psi\left(z_{1}, \ldots, z_{d-1}\right)$ that we can similarly use.
We define ϕ and proceed as above:

$$
\begin{aligned}
\phi(\mathbf{t})=\log \left(\psi\left(\rho_{1} e^{i t_{1}}, \ldots, \rho_{d-1} e^{i t_{d-1}}\right)\right) & -\log (\rho) \\
& +\frac{i}{r_{d}}\left(r_{1} t_{1}+\cdots+r_{d-1} t_{d-1}\right)
\end{aligned}
$$

A prefabricated theorem for 2D

Theorem (Pemantle + Wilson)
Let $G(x, y) / H(x, y)$ be meromorphic and suppose that as $\hat{\mathbf{r}}$ varies in a neighbourhood N of (r, s), there is a smoothly varying, strictly minimal smooth critical point ρ in the direction (r, s). Finally $G(\rho) \neq 0$. Define $\mathbf{z}(r, s)$ as the critical point in the direction (r, s), and define

$$
\begin{gathered}
Q(\mathbf{z}(\hat{\mathbf{r}})):=-y^{2} H_{y}^{2} x H_{x}-y H_{y} x^{2} H_{x}-x^{2} y^{2} \\
\left(H_{y}^{2} H_{x x}+H_{x}^{2} H_{y} y-2 H_{x} H_{y} H_{x y}\right) .
\end{gathered}
$$

If this function is nonzero in a neighbourhood of $(r n, s n)$ then

$$
f(r n, s n) \sim \frac{G(\rho)\left(x^{-r} y^{-s}\right)^{n}}{\sqrt{2 \pi}} \sqrt{\frac{-\rho_{2} H_{y}(\rho)}{n s Q(\rho)}}
$$

Transversal Intersections

Transversal Intersection

Intuitively, two curves have a transversal intersection if the intersection is robust to small perturbations of the curves.

YES Two non-parallel lines in \mathbb{R}^{2}
NO Two non-parallel lines in \mathbb{R}^{3}
NO $y=x^{2}$ and $y=0$ at $(0,0)$
NO Three lines in \mathbb{R}^{2}
Proposition
Point $\rho \in \mathcal{V}$ is a multiple point if and only if there is a factorization $H=\prod_{j=1}^{N} H_{j}^{m_{j}}$ with $\nabla H_{j}(\rho) \neq 0$ and $H_{j}(\rho)=0$.
Point ρ is a transverse multiple point of order N if in addition the gradient vectors are linearly independent.

A lattice path enumeration problem

Let $\mathcal{S}=\{\nwarrow, \rightarrow, \downarrow\} . \mathcal{T}=$ walks start at $(0,0)$ end anywhere. Using a reflection principle argument:

$$
T(z)=\Delta \frac{\left(1-y^{2} / x+y^{3}-x^{2} y^{2}+x^{3}-x^{2} / y\right)}{(1-\operatorname{zxy}(1 / x+x / y+y))(1-x)(1-y)}
$$

Three critical points:

$$
\left(w, w^{2}, w^{2} / 3\right),\left(w^{2}, w, w / 3\right),(1,1,1 / 3)
$$

The point $(1,1,1 / 3)$ is at the intersection of more than one variety. Is it transversal?

$$
\left[\begin{array}{l}
\nabla H_{1}(1,1,1 / 3) \\
\nabla H_{2}(1,1,1 / 3) \\
\nabla H_{3}(1,1,1 / 3)
\end{array}\right]=\left[\begin{array}{ccc}
-1 & -1 & -3 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

This matrix of full rank, and so YES $(1,1,1 / 3)$ is a transversal multiple point of order 3 .

Image of \mathcal{V} under $(x, y, z) \mapsto(|x|,|y|,|z|)$

Transversal Intersection: THM B

Pemantle and Wilson 2013

Theorem 10.3.3 (complete intersection) Let $F=G / \prod_{j=1}^{d} H_{j}^{m_{j}}$ in \mathbf{R}_{z} with each H_{j} squarefree and all divisors intersecting transversely at z. Suppose that G is holomorphic in a neighborhood of z and $G(z) \neq 0$. Then

$$
\frac{1}{(2 \pi i)^{d}} \int_{T} z^{-r-1} F(z) d z \sim \Phi_{z}(r)
$$

with

$$
\begin{equation*}
\Phi_{z}(r):=\frac{1}{(m-1)!} \frac{z^{-r} G(z)}{\operatorname{det} \Gamma_{\Psi}(z)}\left(r \Gamma_{\Psi}^{-1}\right)^{m-1} \tag{10.3.3}
\end{equation*}
$$

The remainder term is of a lower exponential order, $\exp [|r|(\hat{r} \cdot \log z-\varepsilon)]$, uniformly as \hat{r} varies over compact subsets of the interior of $\mathbf{N}(z)$.
Γ_{ψ} is the matrix whose rows are the logarithmic gradients $\nabla_{\log } H_{j}(z)$:

$$
\Gamma_{\psi}=\left[x_{j} \frac{\partial H_{i}}{\partial x_{j}}\right]_{i, j}
$$

A lattice path enumeration problem

Let $\mathcal{S}=\{\nwarrow, \rightarrow, \downarrow\} . \mathcal{T}=$ walks start at $(0,0)$ end anywhere. Using a reflection principle argument:

$$
T(z)=\Delta \frac{\left(1-y^{2} / x+y^{3}-x^{2} y^{2}+x^{3}-x^{2} / y\right)}{(1-\operatorname{zxy}(1 / x+x / y+y))(1-x)(1-y)}
$$

Three critical points:

$$
\begin{gathered}
\left(w, w^{2}, w^{2} / 3\right),\left(w^{2}, w, w / 3\right),(1,1,1 / 3) \\
{\left[z^{n}\right] T(z)=3^{n} \cdot n^{-3 / 2} \cdot \frac{3 \sqrt{3}}{4 \sqrt{\pi}}+O\left(3^{n} \cdot n^{-5 / 2}\right)}
\end{gathered}
$$

The two smooth critical points give a contribution $O\left(3^{n} / n^{2}\right)$.

Two Main Takeaway Ideas

Summary

Diagonal Asymptotics

Given:

$$
F(\mathbf{z})=G(\mathbf{z}) / H(\mathbf{z})=\sum f(\mathbf{n}) \mathbf{z}^{\mathbf{n}}
$$

Determine the asymptotics of $f(n, n, \ldots, n)$ as $n \rightarrow \infty$

- Singular Variety $\mathcal{V}=\{\mathbf{z} \mid H(\mathbf{z})=0\}$
- Minimal Points: $\partial \mathcal{D} \cap \mathcal{V}$
- Critical points minimize: $\left|\rho_{1} \ldots \rho_{d}\right|^{-1}$ (with value μ, say)
- Minimal critical point ρ contained in both

$$
\underbrace{-\log \left|z_{1}\right|-\cdots-\log \left|z_{d}\right|=\log \mu}_{\text {a hyperplane }} \quad \rho \in \partial \mathcal{D} \cap \mathcal{V}
$$

- Treat each critical point: If variety is smooth at critical point, THM A; Transverse multiple point THM B; Else...

Bibliography

(1) Analytic Combinatorics in Several Variables. Pemantle and Wilson Cambridge University Press
(2) Analytic Combinatorics in Several Variables: Effective Asymptotics and Lattice Path Enumeration. PhD thesis of Stephen Melczer 2017
(3) Upcoming: Introductory Multidimensional Analytic Combinatorics. Marni Mishna, CRC Press

