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Counting walks in (rational) cones

Take a starting point p0 in Z2, a (finite) step set S ⊂ Z2 and a cone C.

Questions
What is the number c(n) of n-step walks starting at p0, taking their
steps in S and contained in C?
For (i , j) ∈ C, what is the number c(i , j ; n) of such walks that end at
(i , j)?

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

(i , j) = (5, 1)

• Generating function:

C (x , y ; t) =
∑
i ,j ,n

c(i , j ; n)x iy j tn

=
∑

w walk
x i(w)y j(w)t |w |

What is the value/nature of this series?
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A hierarchy of formal power series

• Rational series

A(t) =
P(t)

Q(t)

• Algebraic series

P(t,A(t)) = 0

• Differentially finite series (D-finite)
d∑

i=0

Pi (t)A(i)(t) = 0

• D-algebraic series

P(t,A(t),A′(t), . . . ,A(d)(t)) = 0

Multi-variate series: one DE per variable
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Normalizing the cone: 4 cases

The full space: rational series

C (x , y ; t) =
1

1− tS(x , y)
=
∑
n≥0

tnS(x , y)n,

where S(x , y) is the step polynomial:

S(x , y) =
∑

(i ,j)∈S

x iy j .

A half-space: algebraic series
[Gessel 80]; [mbm-Petkovšek 00], [Duchon 00], [Banderier & Flajolet 02]...

A convex cone → walks in the non-negative quadrant: Q(x , y ; t)

A non-convex cone → walks avoiding the negative quadrant: C (x , y ; t)
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Walks with small steps

• S ⊂ {1̄, 0, 1}2 \ {(0, 0)} ⇒ 28 = 256 step sets (or: models)

• However, some models are equivalent to a half-space problem (hence
algebraic) and/or to another model (diagonal symmetry).

• On the quadrant, one is left with 79 interesting distinct models
[mbm-Mishna 09].

• On the three-quadrant cone, one is left with 74 interesting distinct
models: the 5 “singular” models on the quadrant become trivial.

Singular models
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Non-singular

Singular



I. Functional equations

A step by step construction of walks
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In the quadrant

Example: S = {01, 1̄0, 11̄}, with x̄ := 1/x and ȳ := 1/y

Q(x , y ; t) ≡ Q(x , y) = 1+t(y + x̄ + xȳ)Q(x , y)−tx̄Q(0, y)−txȳQ(x , 0)

Q(x , y ; t) =
∑

i ,j ,n≥0

q(i , j ; n)x iy j tn

or(
1− t(y + x̄ + xȳ)

)
xyQ(x , y) = xy − tyQ(0, y)− tx2Q(x , 0)

• The right-hand side is decoupled in x/y .

• The polynomial 1− t(y + x̄ + xȳ) is the kernel of this equation

• The equation involves two catalytic variables x and y (tautological at
x = 0 or y = 0)
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Q(x , y ; t) ≡ Q(x , y) = 1+t(y + x̄ + xȳ)Q(x , y)−tx̄Q(0, y)−txȳQ(x , 0)

or (
1− t(y + x̄ + xȳ)
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In three quadrants

Step by step construction:

C (x , y ; t) ≡ C (x , y) = 1+t(y + x̄ + xȳ)C (x , y)−tx̄C0,−(ȳ)−txȳC−,0(x̄)

with

C0,−(ȳ) =
∑

j<0,n≥0

c(0, j ; n)y j tn, C−,0(x̄) =
∑

i<0,n≥0

c(i , 0; n)x i tn.

C (x , y ; t) =
∑
i ,j ,n

c(i , j ; n)x iy j tn

or(
1− t(y + x̄ + xȳ)

)
xyC (x , y) = xy − tyC0,−(ȳ)− tx2C−,0(x̄).
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A comparison

• First quadrant:(
1− t(y + x̄ + xȳ)

)
xyQ(x , y) = xy − tyQ(0, y)− tx2Q(x , 0)

• Three quadrants:(
1− t(y + x̄ + xȳ)

)
xyC (x , y) = xy − tyC0,−(ȳ)− tx2C−,0(x̄)

with

C0,−(ȳ) =
∑

j<0,n≥0

c(0, j ; n)y j tn, C−,0(x̄) =
∑

i<0,n≥0

c(i , 0; n)x i tn.

• A similar form... but C (x , y) involves negative powers of x and y
(Laurent polynomials)



II. The group of the model

and the orbit sum



The group of the model

Example. Take S = {1̄0, 01, 11̄}, with step polynomial

S(x , y) =
1
x

+ y +
x

y
= x̄ + y + xȳ

Observation: S(x , y) is left unchanged by the rational transformations

Φ : (x , y) 7→ (x̄y , y) and Ψ : (x , y) 7→ (x , xȳ) .

They are involutions, and generate a finite dihedral group G :

(x̄y , y)

(x , xȳ)

(x̄y , x̄)

(ȳ , xȳ)

Ψ

ΦΨ

Φ

(x , y)

Ψ

Φ

(ȳ , x̄)

The group G can be defined for any model with small steps
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Ψ

ΦΨ

Φ

(x , y)

Ψ

Φ
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(ȳ , x̄)

The group G can be defined for any model with small steps



The group is not always finite

• If S = {01̄, 1̄1̄, 1̄0, 11}, then S(x , y) = x̄(1 + ȳ) + ȳ + xy and

Φ : (x , y) 7→ (x̄ ȳ(1 + ȳ), y) and Ψ : (x , y) 7→ (x , x̄ ȳ(1 + x̄))

generate an infinite group:

Ψ

Φ

(x , y)

· · ·

· · ·(x , x̄ ȳ(1 + x̄))

(x̄ ȳ(1 + ȳ), y)
Ψ

Φ

· · ·

· · ·

· · ·

· · ·

Φ

Ψ

Ψ

Φ



The orbit sum

• The quadrant equation reads (with K (x , y) = 1− t(y + x̄ + xȳ)):

K (x , y)xyQ(x , y) = xy − tx2Q(x , 0)− tyQ(0, y)

• The orbit of (x , y) under G is

(x , y)
Φ←→(x̄y , y)

Ψ←→(x̄y , x̄)
Φ←→(ȳ , x̄)

Ψ←→(ȳ , xȳ)
Φ←→(x , xȳ)

Ψ←→(x , y).

• All transformations of G leave K (x , y) invariant. Hence

K (x , y) xyQ(x , y) = xy − tx2Q(x , 0) − tyQ(0, y)

K (x , y) x̄y2Q(x̄y , y) = x̄y2 − tx̄2y2Q(x̄y , 0) − tyQ(0, y)

K (x , y) x̄2yQ(x̄y , x̄) = x̄2y − tx̄2y2Q(x̄y , 0) − tx̄Q(0, x̄)

· · · = · · ·

K (x , y) x2ȳQ(x , xȳ) = x2ȳ − tx2Q(x , 0) − txȳQ(0, xȳ).
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The orbit sum

⇒ Form the alternating sum of the equation over all elements of the orbit:

K (x , y)
(
xyQ(x , y)− x̄y2Q(x̄y , y) + x̄2yQ(x̄y , x̄)

− x̄ ȳQ(ȳ , x̄) + xȳ2Q(ȳ , xȳ)− x2ȳQ(x , xȳ)
)

=

xy − x̄y2 + x̄2y − x̄ ȳ + xȳ2 − x2ȳ

the orbit sum.

Similarly, for walks avoiding a quadrant:

K (x , y)
(
xyC (x , y)− x̄y2C (x̄y , y) + x̄2yC (x̄y , x̄)

− x̄ ȳC (ȳ , x̄) + xȳ2C (ȳ , xȳ)− x2ȳC (x , xȳ)
)

=

xy − x̄y2 + x̄2y − x̄ ȳ + xȳ2 − x2ȳ
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III. Classification of walks
in the first quadrant

i

j



Some examples

Algebraic [Kreweras 65, Gessel 86]

(1− t(x̄ + ȳ + xy))xyQ(x , y) = xy − tyQ(0, y)− txQ(x , 0)

D-finite, but transcendental [Gessel 90](
1− t(y + x̄ + xȳ)

)
xyQ(x , y) = xy − tyQ(0, y)− tx2Q(x , 0)

D-algebraic, but not D-finite [Bernardi, mbm & Raschel 17]

(1− t(x + x̄ + y + xȳ))xyQ(x , y) = xy − tyQ(0, y)− tx2Q(x , 0)

Not D-algebraic [Dreyfus, Hardouin, Roques & Singer 17]

(1− t(xȳ + x̄ + ȳ + y))xyQ(x , y) = xy − tyQ(0, y)− tx(1 + x)Q(x , 0)



Classification of quadrant walks

quadrant models: 79

|G |<∞: 23

D-finite

OS=0: 4

algebraic

OS6=0: 19

DF transc.

|G |=∞: 56

Not D-finite

decoupled: 9

D-alg.

not decoupled: 47

not D-alg.



The finite group case (23 models)

• For the 19 models for which the orbit sum is non-zero:

xyQ(x , y ; t) = [x>0y>0]
OS

K (x , y ; t)

is a D-finite series. [mbm-Mishna 10]

/ C � B .

• 4 models have a vanishing orbit sum:

They all have an algebraic generating function Q(x, y ; t)

[Gessel 86, Mishna 08, mbm-Mishna 10, Bostan & Kauers 10], and more!



IV. Three quadrants
A solution for some models

relating C (x , y) to the quadrant series Q(x , y)

...
do three-quadrant equations with orbit sum zero have algebraic
solutions?
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A conjectural classification

Walks with small steps avoiding the negative quadrant:

models: 74

|G |<∞: 23

OS 6=0: 19

D-finite?

OS=0: 4

algebraic?

|G |=∞: 51

Not D-finite

• Non-D-finiteness is proved by an asymptotic argument [Mustapha 19]



Some references

• Explicit D-finite expression for 2 step sets [mbm 16], [Budd 17(a)]

• Explicit D-finite expression for the king’s walk [mbm & Wallner 19+]

• Integral expressions for some symmetric models [Raschel-Trotignon 18(a)]

D-finite

Not D-finite



Explicit expressions for numbers

Example. The number of walks of length 2n on the diagonal square
lattice starting and ending at (0, 0) and avoiding the negative quadrant is

c(0, 0; 2n) =
16n

9

(
3

(1/2)2
n

(2)2
n

+ 8
(1/2)n(7/6)n

(2)n(4/3)n
− 2

(1/2)n(5/6)n
(2)n(5/3)n

)
with (a)n = a(a + 1) · · · (a + n − 1).



Explicit expressions for numbers

Example. The number of walks of length 2n on the diagonal square
lattice starting and ending at (0, 0) and avoiding the negative quadrant is

c(0, 0; 2n) =
16n

9

(
3

(1/2)2
n

(2)2
n

+ 8
(1/2)n(7/6)n

(2)n(4/3)n
− 2

(1/2)n(5/6)n
(2)n(5/3)n

)
with (a)n = a(a + 1) · · · (a + n − 1).

The first term is 1
3q(0, 0; 2n).

The generating functions of the other two terms are algebraic.



Explicit expressions for series

• The quadrant series Q(x , y) ≡ Q(x , y ; t) is the non-negative part in x
and y of an explicit rational series (hence D-finite).

A structured series [mbm 15(a), mbm & Wallner 19+]
The series C (x , y ; t) ≡ C (x , y) counting walks that avoid the negative
quadrant is

1
3
(
Q(x , y)− x̄2Q(x̄ , y)− ȳ2Q(x , ȳ)

)
+ A(x , y)

where x̄ = 1/x , ȳ = 1/y and A(x , y) is algebraic. This series satisfies

(1− t(x + x̄ + y + ȳ))A(x , y) = (2 + x̄2 + ȳ2)/3− tȳA−(x̄)− tx̄A−(ȳ),

where A−(x) is a series in t with coefficients in Q[x ], algebraic of
degree 24/24/72, given explicitly with its intermediate extensions.
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)
+ A(x , y)
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where A−(x) is a series in t with coefficients in Q[x ], algebraic of
degree 24/24/72, given explicitly with its intermediate extensions.



Two points

The solution:

C (x , y) =
1
3
(
Q(x , y)− x̄2Q(x̄ , y)− ȳ2Q(x , ȳ)

)
+ A(x , y)

where A(x , y) is algebraic.

Where the series A(x , y) comes from
Polynomial equations with one catalytic variable have algebraic
solutions



Where the series A(x , y) comes from

• The group: (x , y), (x̄ , y), (x̄ , ȳ), (x , ȳ)

• The orbit sum:(
1− t(x + x̄ + y + ȳ)

)
(xyC (x , y)− x̄yC (x̄ , y) + x̄ ȳC (x̄ , ȳ)− xȳC (x , ȳ))

=
(
1− t(x + x̄ + y + ȳ)

)
(xyQ(x , y)− x̄yQ(x̄ , y) + x̄ ȳQ(x̄ , ȳ)− xȳQ(x , ȳ))

= xy − x̄y + x̄ ȳ − xȳ .

• The alternating sums of the following series are the same:

xyC (x , y), xyQ(x , y),

but also −x̄yQ(x̄ , y), x̄ ȳQ(x̄ , ȳ), −xȳQ(x , ȳ)

.

• Define A(x , y) by

xyC (x , y) := xyA(x , y) +
1
3

(xyQ(x , y)−x̄yQ(x̄ , y)− xȳQ(x , ȳ)) .

• Then A(x , y) has orbit sum zero and satisfies

(1− t(x + x̄ + y + ȳ))xyA(x , y) =
2xy + x̄y + xȳ

3
− tyA−(ȳ)− txA−(x̄)
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Three-quadrant equations with vanishing orbit sum:
algebraicity?

• The series A(x , y) has orbit sum zero and satisfies

(1− t(x + x̄ + y + ȳ))xyA(x , y) = (2xy+x̄y+xȳ)/3−tyA−(ȳ)−txA−(x̄)

Thm. The series A(x , y) is algebraic for the three models.

[mbm 16, mbm & Wallner 19+]

• Another indication: for three-quadrant walks on the square lattice
starting at (−1, 0), with equation

(1− t(x + x̄ + y + ȳ))xyC (x , y) = y − tyC0,−(ȳ)− txC−,0(x).

The orbit sum is y − y + ȳ − ȳ = 0 and C (x , y) is algebraic [mbm 16].
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A general structure? Some conjectures

• The 4 models with orbit sum zero have an algebraic generating function:

• For any “reflection” model,

xyC (x , y) = xyA(x , y) +
1

|G | − 1

∑
g∈G ,g 6=gmax

sign(g)g(xyQ(x , y))

where A(x , y) is algebraic.

• What about the following vertically symmetric models?

DF
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Back to series with polynomial coefficients in x and y

• The equation for A(x , y) (with K (x , y) = 1− t(x + x̄ + y + ȳ)):

K (x , y)A(x , y) = (2 + x̄2 + ȳ2)/3− tȳA−(x̄)− tx̄A−(ȳ)

• Split A(x , y) into three parts:

A(x , y) = P(x , y) + x̄M(x̄ , y) + ȳM(ȳ , x)

ȳM(ȳ , x)

x̄M(x̄ , y) P(x , y)

⇒ Equations for P(x , y) and M(x , y)



The equation for M(x , y) is (almost) a quadrant equation

• M(x , y) is a series in t with coefficients in Q[x , y ], satisfying

(1− t(x + x̄ + y + ȳ)) (2M(x , y)−M(0, y)) =

2x/3− 2tȳM(x , 0) + t(x − x̄)M(0, y) + tȳM(y , 0).

• Proof that M(x , y) is algebraic:
[...]
equation for M(0, x): let S(x) = txM(0, x), then

((1− t(x + x̄))2 − 4t2)

(
S(x)3 +

2x + 1
x + 1

S(x)2 +
S(x)

x̄ + 1

)
=

(
t2(x + x̄)− A2

)
(S(x) + 1) + t2A1 −

2t2A1 − A2

x + 1
− t2x̄ ,

where A1 and A2 are series in t only.

A polynomial equation with one catalytic variable (x) only.
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Polynomial equations with one catalytic variable

Theorem [mbm-Jehanne 06]
Let P(t, x , S(x ; t),A1(t), . . . ,Ak(t)) be a proper polynomial equation in
one catalytic variable y (it defines uniquely S(x ; t),A1(t), . . . ,Ak(t) as
formal power series in t/x). Then each of these series is algebraic.

The proof is constructive.

Example:

((1− t(x + x̄))2 − 4t2)

(
S(x)3 +

2x + 1
x + 1

S(x)2 +
S(x)

x̄ + 1

)
=

(
t2(x + x̄)− A2

)
(S(x) + 1) + t2A1 −

2t2A1 − A2

x + 1
− t2x̄ .
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)
(S(x) + 1) + t2A1 −

2t2A1 − A2
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/ C � B .

Algebraicity follows from (a special case of) an Artin approximation
theorem with “nested” conditions [Popescu 86, Swan 98]



The king’s walk: technical difficulties

Computer algebra to the rescue!

The final equation with one catalytic variable

P(t, x ,S(x ; t),A1(t), . . . ,Ak(t)) = 0

involve k = 4 series Ai (instead of k = 2 for the square lattice)
they are given by a big system of 4 polynomial equations, solved
(partly) by guess & check
each Ai ends up having degree 24 (instead of 8)
their common genus is 2 instead of 0 (⇒ normal hyperelliptic forms)

[mbm & Wallner 19+]



An example

• The generating function of walks ending at (−1, 0) is algebraic of
degree 24: ∑

n

c(−1, 0; n)tn =
1
2t

(
1 + 2V

2V 3 − 4V − 1
W − 1

)
where

U = t(1 + 18U2 − 27U4) + t2(1 + U)(1− 3U)3,

V = U
1 + 3V − V 3

1 + V + V 2 ,

W 2 = 1 + 4V − 4V 3 − 4V 4.



Further questions

Complete the classification...
First for models such that an (algebraic?) series A(x , y) can be
defined by

xyC (x , y) = xyA(x , y) +
1

|G | − 1

∑
g∈G ,g 6=gmax

sign(g)g(xyQ(x , y))

What about the other models with a finite group?
Are there D-algebraic (but not D-finite) models?

models: 74

|G |<∞: 23

OS 6=0: 19

D-finite?

OS=0: 4

algebraic?

|G |=∞: 51

Not D-finite
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