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Take a starting point pg in Z2, a (finite) step set S C Z? and a cone C.

What is the number c(n) of n-step walks starting at pp, taking their
steps in S and contained in C?

For (i,j) € C, what is the number c(i,j; n) of such walks that end at
(1,4)?




Take a starting point pg in Z2, a (finite) step set S C Z? and a cone C.

What is the number c(n) of n-step walks starting at pp, taking their
steps in S and contained in C?

For (i,j) € C, what is the number c(i,j; n) of such walks that end at
(1,4)?

e Generating function:

Clx,yit) =Y clijim)x'y/t"
ij,n

w walk

What is the value/nature of this series?



A hierarchy of formal power series

e Rational series

e Algebraic series
P(t,A(t)) =0

o Differentially finite series (D-finite)

d
> Pi()AD(t) =0

i=0

e D-algebraic series
P(t, A(t), A'(t),..., A9 (t)) =0




A hierarchy of formal power series

e Rational series

e Algebraic series
P(t,A(t)) =0

o Differentially finite series (D-finite)

d
> Pi()AD(t) =0

i=0

e D-algebraic series
P(t, A(t), A'(t),..., A9 (t)) =0

Multi-variate series: one DE per variable




o The full space: rational series

Clx,y;t) = tS(X ) Z t"S(x,y)",

where S(x, y) is the step polynomial:

S(,y)= > Xyl

(ij)es




o The full space: rational series

@ A half-space: algebraic series
[Gessel 80]; [mbm-Petkovsek 00], [Duchon 00], [Banderier & Flajolet 02]...




Normalizing the cone: 4 cases

@ The full space: rational series

@ A half-space: algebraic series
[Gessel 80]; [mbm-Petkovsek 00], [Duchon 00], [Banderier & Flajolet 02]...

@ A convex cone — walks in the non-negative quadrant: Q(x,y; t)




Normalizing the cone: 4 cases

@ The full space: rational series

@ A half-space: algebraic series
[Gessel 80]; [mbm-Petkovsek 00], [Duchon 00], [Banderier & Flajolet 02]...

@ A convex cone — walks in the non-negative quadrant: Q(x,y; t)

@ A non-convex cone — walks avoiding the negative quadrant: C(x,y;t)




e S C{1,0,1}2\ {(0,0)} = 28 = 256 step sets (or: models)
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algebraic) and/or to another model (diagonal symmetry).
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e However, some models are equivalent to a half-space problem (hence
algebraic) and/or to another model (diagonal symmetry).

e On the quadrant, one is left with 79 interesting distinct models
[mbm-Mishna 09].



Walks with small steps %

e S C{1,0,1}2\ {(0,0)} = 28 = 256 step sets (or: models)

e However, some models are equivalent to a half-space problem (hence
algebraic) and/or to another model (diagonal symmetry).

e On the quadrant, one is left with 79 interesting distinct models
[mbm-Mishna 09].

e On the three-quadrant cone, one is left with 74 interesting distinct
models: the 5 “singular’ models on the quadrant become trivial.

Singular models
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A step by step construction of walks




Example: S = {01,10,11}, with X := 1/x and y :=1/y

Q(x,yit) = Q(x,y) = 1+t(y + X + x7)Q(x,y) —txQ(0, y) — txy Q(x, 0)

Qlxyit)= Y qlijin)x'y't"

ij,n>0



Example: S = {01,10,11}, with X :=1/x and y := 1/y
Qlx,yit) = Q(x,y) = 1+t(y + X+ xy)Q(x, y) = txQ(0, y) = txy Q(x,0)

(1 - t(Y+)_<+X}7))Q(XaY) =1- t)_(Q(c}?}/) - tX.)_/Q(XaO)7



In the quadrant ~\

Example: S = {01,10,11}, with X :=1/x and y := 1/y
Qlx,yit) = Qx,y) = 1+t(y + X + x¥7)Q(x, y) —txQ(0, y) — txy Q(x, 0)

(1 - t(Y+)_<+X)7))Q(X7y) =1- t)?Q(an) - thQ(X7O)a

or

(1= tly + X+ x7))0Q(x, ) = xy — tyQ(0,y) — tx*Q(x,0)

e The right-hand side is decoupled in x/y.
e The polynomial 1 — t(y + X + xy) is the kernel of this equation

e The equation involves two catalytic variables x and y (tautological at
x=0ory=0)



Step by step construction:
Clx,yit) = Clx,y) = 1+t(y + X + x7) C(x, y) —tx Co, (¥) — txy C— o(X)
with

Go-(y) = Z c(0,/; n)y/t", C_o(x) = Z c(i,0; n)x't".

j<0,n>0 i<0,n>0

Sk o by . i
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Clayit) =Y clijin)x'y/t"

ij,n



Step by step construction:
Clx,yit) = Clx,y) = 1+t(y + X + x7) C(x, y) —tx Co, (¥) — txy C— o(X)
with
Go-(y) = Z c(0, j; n)y/t", C_o(x) = Z c(i,0; n)x't".
j<0,n>0 i<0,n>0
or

(1—tly +x+x7))C(x,y) =1 —txCo_(¥) — txy C_o(X),



Step by step construction:
Clx,yit) = Clx,y) = 1+t(y + X + x7) C(x, y) —tx Co, (¥) — txy C— o(X)
with

G -(7)= Y c0ginyt’,  Cox)= > c(i,0n)xt".
j<0,n>0 i<0,n>0
or

(1—tly +x+x7))C(x,y) =1 —txCo_(¥) — txy C_o(X),

or

(1= t(y + %+ x7))xvC(x,y) = xy — tyGo—(7) — tx*C o(X).




e First quadrant:

(1= tly + X +x7))0Qx,¥) = xv = tyQ(0,y) — &*Q(x,0)
e Three quadrants:

(1= t(y +x +x7))xyC(x,y) = xy — tyCo—(¥) — tx*C_o(X)
with

Go-(7)= Y c0ginyt’,  Cox)= > c(i,0n)xt".

Jj<0,n>0 i<0,n>0

e A similar form... but C(x,y) involves negative powers of x and y
(Laurent polynomials)






Example. Take S = {10,01, 11}, with step polynomial

1
5(x,y)=;+y+;(—/:>'<+y+xy



Example. Take S = {10,01, 11}, with step polynomial
1 X _
Sy)=—+y+-=X+y+xy
X y
Observation: S(x, y) is left unchanged by the rational transformations

O (x,y) = (Xy,y) and WV :(x,y)— (x,xy).



The group of the model -
Example. Take S = {10, 01,11}, with step polynomial
1 X _ _
S(y)=—+y+t-=Xx+y+xy
X y
Observation: S(x, y) is left unchanged by the rational transformations

o (x,y) = (Xy,y) and WV :(x,y)— (x,xy).

They are involutions, and generate a finite dihedral group G:

v
Gy (Ry. %) —@
(x,¥) (¥, %)
vy —— () Ty



The group of the model -
Example. Take S = {10, 01,11}, with step polynomial
1 X _ _
S(y)=—+y+t-=Xx+y+xy
X y
Observation: S(x, y) is left unchanged by the rational transformations

o (x,y)— (Xy,y) and W :(x,y)+— (x,xy).

They are involutions, and generate a finite dihedral group G:

\
‘D/ (Xy,y) (xy,%)  —&
(x,¥) (¥, %)
v (o) - Ty

The group G can be defined for any model with small steps



o If S ={01,11,10,11}, then S(x,y) = X(1 + ¥) + y + xy and
& (xy) o (RFL+7)y) and W (x,y) = (o 7(1+ X))

generate an infinite group:

¢/()—<}7(1+}7),y) v

(x,¥)

o (x,xy(1+ % el
v (6xy(l+X)) ° v Py




e The quadrant equation reads (with K(x,y) =1 — t(y + X + xy)):
K(x, y)xQ(x,y) = xy — 6*Q(x,0) — tyQ(0, y)

e The orbit of (x,y) under G is

(%, ) €2 (Ry s y )2 (Ry, R) 2 (7, K)o (7, x7) 428 (3, XF) i (x, y ).



The orbit sum Y

e The quadrant equation reads (with K(x,y) =1 — t(y + X + xy)):
K(va)XyQ(Xay) =Xy = tX2Q(X7 O) - tyQ(Ovy)

e The orbit of (x,y) under G is

(6 9) 2 (RY, Y ) (R, R (7, R) (7 7)€ (6, X7) 2 (x, ).

e All transformations of G leave K(x,y) invariant. Hence

Kx,y) xvQ(x,y) = xy — *Q(x,0) —  tyQ(0,y)
K(x,y) 2y*Q(xy,y) = xy? — t22y2Q(xy,0) — tyQ(0.y)
K(x,y) 2yQ(xy,x) = X%y — tx*y?Q(xy,0) — txQ(0,%)

K(x,y) xX*yQ(x,xy) = x?§y — t*Q(x,0) — txyQ(0,xy).



= Form the alternating sum of the equation over all elements of the orbit:

K(x,y) (XyQ(x, y) — xy*Q(Ry,y) + X2yQ(xy, X)
- X7Q(7, %) + x72Q7,x7) ~ 27 Q(x,x7)) =
Xy — )‘<y2 + >'<2y — Xy +X)72 — x2)7

the orbit sum.



The orbit sum Y

= Form the alternating sum of the equation over all elements of the orbit:

K(x,y) (XyO(X, ) = %y Q(Xy,y) + XyQ(Xy, X)
~ X7Q(7,X) + x7*Q(7,x7) ~ X*7Q(x, x7) ) =
xy — xy? + X%y — Xy + x7° = Xy
the orbit sum.

Similarly, for walks avoiding a quadrant:
K(x.9) (xvC(x.y) = Ry2C(Ry,y) + RyC(%y, )

— X7C(7, %)+ x72C(7.x7) = 27 C(x, x7) ) =

xy—>‘<y2+>'<2y—)'<)7+xy2 —x2)7






{ Algebraic [Kreweras 65, Gessel 86|

(1= t(x+y +x7))xyQ(x,y) = xy — tyQ(0,y) — txQ(x, 0)

K D-finite, but transcendental [Gessel 90]

(1= t(y + %+ x7))xvQ(x,y) = xy — tyQ(0,y) — tx*Q(x,0)

Ji D-algebraic, but not D-finite [Bernardi, mbm & Raschel 17]

(1—t(x+ X +y+x7))xvQ(x,y) = xy — tyQ(0, y) — tx*Q(x, 0)

ﬁ Not D-algebraic [Dreyfus, Hardouin, Roques & Singer 17]

(L —tlxy +x+7 +y))xyQ(x,y) = xy — tyQ(0,y) — tx(1 + x)Q(x, 0)



quadrant models: 79
!

| \
|G|<oo: 23 |G|=00: 56
| |

D-finite Not D-finite
|

E—— | \
0S=0: 4 0S#0: 19 decoupled: 9 not decoupled: 47

| | | {

algebraic  DF transc. D-alg. not D-alg.



o For the 19 models for which the orbit sum is non-zero:

oS
. _ >0, >0
XyQ(vav t) - [X y ]K(X,y; t)
is a D-finite series. [mbm-Mishna 10]

410> D>

e 4 models have a vanishing orbit sum:

H PR K

They all have an algebraic generating function Q(x, y;t)

[Gessel 86, Mishna 08, mbm-Mishna 10, Bostan & Kauers 10], and more!



A solution for some models
e relating C(x,y) to the quadrant series Q(x, y)
° ...

@ do three-quadrant equations with orbit sum zero have algebraic
solutions?




Walks with small steps avoiding the negative quadrant:

models: 74
|

| \
|G|<oo: 23 |G|=00: 51

—— |
0S#0: 19 0S=0: 4 Not D-finite

D-finite? algebraic?

e Non-D-finiteness is proved by an asymptotic argument [Mustapha 19]



e Explicit D-finite expression for 2 step sets [mbm 16], [Budd 17(a)]

TL

X

e Explicit D-finite expression for the king's walk [mbm & Wallner 19+]

K

e Integral expressions for some symmetric models [Raschel-Trotignon 18(a)]

JT
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D-finite

Not D-finite



Explicit expressions for numbers X

Example. The number of walks of length 2n on the diagonal square
lattice starting and ending at (0,0) and avoiding the negative quadrant is

oy 167 (L (1/2)5 o (1/2)n(7/6)n  (1/2)n(5/6)n
cto0i2n) = 5 (st +o (T 2 L)
with (a), =a(a+1)---(a+n—1).




Explicit expressions for numbers X

Example. The number of walks of length 2n on the diagonal square
lattice starting and ending at (0,0) and avoiding the negative quadrant is

oy 167 (L (1/2)5 o (1/2)n(7/6)n  (1/2)n(5/6)n
cto0i2n) = 5 (st +o (T 2 L)
with (a), =a(a+1)---(a+n—1).

@ The first term is %q(0,0;2n).
@ The generating functions of the other two terms are algebraic.



e The quadrant series Q(x, y) = Q(x, y; t) is the non-negative part in x
and y of an explicit rational series (hence D-finite).



e The quadrant series Q(x, y) = Q(x, y; t) is the non-negative part in x
and y of an explicit rational series (hence D-finite).

The series C(x,y; t) = C(x,y) counting walks that avoid the negative
quadrant is

(Qx,y) — 22 Q(%X,y) — 7’ Q(x, 7)) + Alx, y)

where X = 1/x, y = 1/y and A(x, y) is algebraic. This series satisfies

(I—tx+x+y+7)Alxy) = (2+ 5> +7°)/3 - tyA_(X) — txA_(¥),

where A_(x) is a series in t with coefficients in Q[x], algebraic of
degree 24/24/72, given explicitly with its intermediate extensions.




The solution:
1
C(Xa}/) = 5 (Q(Xay) _)_(20()?7)/) _yzQ(Xv.)_/)) +A(X7y)

where A(x, y) is algebraic.

@ Where the series A(x,y) comes from

@ Polynomial equations with one catalytic variable have algebraic
solutions



e The group: (x,y),(X,y),(X,¥),(x,¥)



e The group: (x,y), (%,y), (X, 7), (x, )

e The orbit sum:

(1 - t(X+)_<+y+}7)) (XyC(X7y) _)_(yc()?ay) +)_(}7C()_(,}7) _X.}_/C(X7)7))

= (1 - t(X+)_<+y+.)7)) (XyQ(X7.y) _)_(}/Q()_(,}/) +)_(}70()_(7}7) —X}7Q(X,}7:
=Xy — Xy + Xy — Xxy.



Where the series A(x, y) comes from T

X

e The group: (x,y), (x,¥),(X,¥),(x,¥)

e The orbit sum:

K

<1_ t(X+)_<+y—~_)7)) (XyC(X,y)—)_(yC()_(,y)+)_()7C()_(7)7)—X)7C(X,)7))
= (1_ t(X+)_<+Y+}7)) (XyQ(X,y)_)?yQ()_(,y)‘f')?YQ()_(,)_/)_X}7Q(X,)_/:
=Xy — Xy + Xy — Xy.

e The alternating sums of the following series are the same:

xyC(x,y), xyQ(x,y),



Where the series A(x, y) comes from X ‘%

e The group: (x,y),(X,y).(X,7), (x.¥)

e The orbit sum:

(1= tlx + % +y+7)) (vClx,y) = xyC(%,y) + X7 C(%,7) — x7 C(x, 7))

= (1-tlx+x+y+7)) (0Q(x.y) — xyQ(%, ) + 2y Q(X,7) — xyQ(x. ¥
=Xy — Xy + Xy — Xxy.

e The alternating sums of the following series are the same:

xyC(x,y), xyQ(x,y), butalso —xyQ(x,y), xyQ(x,y), —xyQ(x,y)



Where the series A(x, y) comes from X ‘%

e The group: (x,y),(x,y),(%,7),(x,¥)

e The orbit sum:

(1t +x+y+7)) (vC(xy) = XyC(R,y) + 27 C(%,7) — x7C(x, 7))

= (1= tlx+x+y+7)) CoQxy) = xyQ(%,y) + X7Q(%,7) — xyQ(x, ¥
=Xy — Xy + Xy — Xy.

e The alternating sums of the following series are the same:

wC(x,y), Q(xy), butalso —xyQ(%,y), X7Q(%.7), —x7Q(x.7)

e Define A(x,y) by

xyC(x,y) == xyA(x,y) + % (xyQ(x,y)—xyQ(X,y) — xyQ(x,¥)) -



Where the series A(x, y) comes from X ‘%

e The group: (x,y),(x,y),(%,7),(x,¥)

e The orbit sum:

(1t +x+y+7)) (vC(xy) = XyC(R,y) + 27 C(%,7) — x7C(x, 7))

= (1= tlx+x+y+7)) CoQxy) = xyQ(%,y) + X7Q(%,7) — xyQ(x, ¥
=Xy — Xy + Xy — Xy.

e The alternating sums of the following series are the same:

wC(x,y), Q(xy), butalso —xyQ(%,y), X7Q(%.7), —x7Q(x.7)

e Define A(x,y) by

xyC(x,y) == xyA(x,y) + % (xyQ(x,y)—xyQ(X,y) — xyQ(x,¥)) -

e Then A(x, y) has orbit sum zero and satisfies

2xy + Xy + Xy
3

(1—tx+Xx+y+7))xvA(x,y) = — tyA_ (V) — txA_(X)




e The series A(x, y) has orbit sum zero and satisfies

(I —t(x+X+y+y)xA(x,y) = 2xy+xy+xy)/3—tyA_(V)—txA_(X)

Thm. The series A(x, y) is algebraic for the three models.

+ >< % [mbm 16, mbm & Wallner 19+




Three-quadrant equations with vanishing orbit sum:
algebraicity?
e The series A(x, y) has orbit sum zero and satisfies

(1—t(x+X+y+7)xvA(x,y) = (2xy+Ry+x7)/3—tyA_(7)—txA_(X)

Thm. The series A(x, y) is algebraic for the three models.
>< : E [mbm 16, mbm & Wallner 19+]

e Another indication: for three-quadrant walks on the square lattice
starting at (—1,0), with equation

(1—tx+x+y+y))xyC(x,y) =y — tyCo—(y) — txC_ o(x).
The orbit sumisy —y +y — y =0 and C(x,y) is algebraic [mbm 16].




e The 4 models with orbit sum zero have an algebraic generating function:




e The 4 models with orbit sum zero have an algebraic generating function:

e For any “reflection” model,

Z sign(g)g(xyQ(x,y))

1
xyC(x,y) = xyA(x,y) + T
g€G,g7#gmax

where A(x, y) is algebraic.

EEXKEBRR-



e The 4 models with orbit sum zero have an algebraic generating function:

e For any “reflection” model,

Z sign(g)g(xyQ(x,y))

1
xyC(x,y) = xyA(x,y) + T
8€G,g7#gmax

where A(x, y) is algebraic.
X B
Y ¥ M _F X ¥
A ZaN X K DF i




Back to series with polynomial coefficients in x and y
e The equation for A(x, y) (with K(x,y) =1—-t(x+Xx+y +¥)):
K(x, Y)A(x,y) = 2+ +7%)/3 = t7A_(X) — tRA_(7)
e Split A(x, y) into three parts:

Alx,y) = P(x,y) + XM(x,y) + yM(y, x)

= Equations for P(x, y) and M(x, y)




e M(x,y) is a series in t with coefficients in Q[x, y], satisfying

(I—tlx+x+y+y)) (2M(x,y) = M(0,y)) =
2x/3 — 2ty M(x,0) + t(x — x)M(0, y) + tyM(y, 0).



The equation for M(x, y) is (almost) a quadrant equation

e M(x,y) is a series in t with coefficients in Q[x, y], satisfying

(1 —tlx+ X +y +7)) 2M(x,y) = M(0,y)) =
2x/3 — 2ty M(x,0) + t(x — x)M(0,y) + tyM(y,0).

e Proof that M(x, y) is algebraic:

o [.]
@ equation for M(0, x): let S(x) = txM(0, x), then

(1 — t(x + X)) — 4t?) <5(x)3 + ﬂs(x)z I > _

x+1 Xx+1
2t2A; — A
(£2(x + %) — A2) (S(x) + 1) + t2A; — # — 2%,

where A; and A are series in t only.

A polynomial equation with one catalytic variable (x) only.



Let P(t,x,S(x;t),Ai(t)
one catalytic variable y (it defines uniquely S(x; t), A1(t)
formal power series in t/x). Then each of these series is algebraic.

The proof is constructive.

Example:
_ 2x+1 S(x)
_ 2 4.2 3, XTi 2, 2 _
((1—t(x+x))° —4t°) (S(X) + 1 S(x)*+ >_<+1)
2t2A1 — Ao B

(B(x+x) — A2) (S(x) + 1) + t2A; — 1 t°x.



Let P(t,x,S(x;t),Ai(t)
one catalytic variable y (it defines uniquely S(x; t), A1(t)
formal power series in t/x). Then each of these series is algebraic.

The proof is constructive.

Example:

(1 — t(x +x))? — 4t2) (5(x)3 n @s(x)z n M) _

+1 Xx+1
2t2A; — A
(£2(x 4 %) — A2) (S(x) + 1) + 12A; — # — 2%,

40> D>

Algebraicity follows from (a special case of) an Artin approximation
theorem with “nested” conditions [Popescu 86, Swan 98]



The king's walk: technical difficulties 7N

Computer algebra to the rescue!

@ The final equation with one catalytic variable
P(t,x, S(x: £), Au(2), ..., A(t)) = 0

involve k = 4 series A; (instead of k = 2 for the square lattice)

@ they are given by a big system of 4 polynomial equations, solved
(partly) by guess & check

@ each A; ends up having degree 24 (instead of 8)

@ their common genus is 2 instead of 0 (= normal hyperelliptic forms)

[mbm & Wallner 19+]



e The generating function of walks ending at (—1,0) is algebraic of
degree 24:

1 1+2V
2 c(-L0mt" = (2v3—4v—1 )

n

where

U=t(1+18U% —27U*%) + t3(1 + U)(1 — 3V)3,
1+3V—Vv3
1+ V4 V2
W2 =1+4V —4v3 —4v*

V=U




o Complete the classification...

models: 74
|

{ |
|G|<oo: 23 |G|=00: 51
—— |

0S+#0: 19 0S=0: 4 Not D-finite

D-finite? algebraic?



Further questions

@ Complete the classification...
e First for models such that an (algebraic?) series A(x,y) can be

defined by
1 .
yC(xy) = x9ACy) + 1 Y sign(2)g(xQ(x,y))
£€G,g#gmax
models: 74
!
| \
|Gl<oo: 23 |G|=00: 51
L |

0S+#£0: 19 0S=0: 4 Not D-finite

D-finite? algebraic?



Further questions

@ Complete the classification...
e First for models such that an (algebraic?) series A(x,y) can be

defined by

1 .
yC(xy) = x9ACy) + 1 Y sign(2)g(xQ(x,y))
£€G,g#gmax

@ What about the other models with a finite group?

models: 74
|

| \

|Gl<oo: 23 |G|=00: 51
— |

0S+#£0: 19 0S=0: 4 Not D-finite

D-finite? algebraic?



Further questions

@ Complete the classification...
e First for models such that an (algebraic?) series A(x,y) can be

defined by

1 .
yC(xy) = x9ACy) + 1 Y sign(2)g(xQ(x,y))
£€G,g#gmax

@ What about the other models with a finite group?
@ Are there D-algebraic (but not D-finite) models?

models: 74
|

| \

|Gl<oo: 23 |G|=00: 51
— |

0S+#£0: 19 0S=0: 4 Not D-finite

D-finite? algebraic?



