Transferts d'indépendance algébrique et congruences à la Lucas

Frédéric Jouhet
Institut Camille Jordan - University Lyon 1

Équations fonctionnelles et interactions, Anglet, June 2019
(joint work with B. Adamczewski, J. Bell, and É. Delaygue)

The p-Lucas congruences

After Lucas (1878), a great attention has been paid on congruences modulo prime numbers p satisfied by various combinatorial sequences related to binomial coefficients.

Example.

$$
\binom{2(p n+m)}{p n+m}^{r} \equiv\binom{2 m}{m}^{r}\binom{2 n}{n}^{r} \quad \bmod p
$$

where $0 \leq m \leq p-1$ and $n \geq 0, r \geq 1$.

Definition

For a prime number p , a sequence $(a(\mathbf{n}))_{\mathbf{n} \in \mathbb{N}^{d}}$ with integral values is p-Lucas if for any $\mathbf{n} \in \mathbb{N}^{d}$

$$
a(p \mathbf{n}+\mathbf{m}) \equiv a(\mathbf{m}) a(\mathbf{n}) \bmod p \quad \text { for all } \mathbf{m} \in\{0, \ldots, p-1\}^{d} .
$$

A generating series approach

Define $g_{r}(x):=\sum_{n=0}^{\infty}\binom{2 n}{n}^{r} x^{n}$. Then we have

$$
\begin{aligned}
g_{r}(x) & \equiv \sum_{m=0}^{p-1} \sum_{n=0}^{+\infty}\binom{2 m}{m}^{r}\binom{2 n}{n}^{r} x^{p n+m} \bmod p \mathbb{Z}[[x]] \\
& \equiv\left(\sum_{m=0}^{p-1}\binom{2 m}{m}^{r} x^{m}\right) g_{r}\left(x^{p}\right) \bmod p \mathbb{Z}[[x]]
\end{aligned}
$$

The p-Lucas property of the coefficients is actually equivalent to

$$
g_{r}(x) \equiv A(x) g_{r}\left(x^{p}\right) \quad \bmod p \mathbb{Z}[[x]]
$$

where $A(x) \in \mathbb{Z}[x]$ depends on r and p, and has degree at most $p-1$.
This means that the reduction modulo p of $g_{r}(x)$ satisfies an Ore equation of order 1 , for all prime numbers p.

Motivations

Furstenberg (1967) and Deligne (1983) proved that the diagonal of a multivariate algebraic power series $f(\mathbf{x}) \in \mathbb{Q}[[\mathbf{x}]]$ is algebraic modulo p for almost all prime numbers p.

Adamczewski-Bell (2013) proved that when $f(\mathbf{x}) \in \mathbb{Z}[[\mathbf{x}]]$ the reductions modulo p of such diagonals satisfy an Ore equation of an order r independant of p : there exist $A_{i}(x) \in \mathbb{F}_{p}[x]$ such that

$$
A_{0}(x) \Delta(f)_{\mid p}(x)+A_{1}(x) \Delta(f)_{\mid p}(x)^{p}+\cdots+A_{r}(x) \Delta(f)_{\mid p}(x)^{p^{r}}=0
$$

Christol (1985) conjectured that any power series in $\mathbb{Z}[[x]]$, D-finite and with a positive radius of convergence, is the diagonal of a rational fraction.
Adamczewski-Bell-Delaygue (2016) proved that a large class of functions satisfy, as $g_{r}(x)$, a linear equation of order 1 with respect to (an iteration of) the Frobenius, for all prime numbers p.

Other examples

Binomial coefficients $\binom{n}{k},\binom{2 n}{n}^{r}$
Factorial ratios $\frac{(10 n)!}{(5 n)!(3 n)!n!^{2}}$
Apéry sequences $\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2}$
Franel numbers $\sum_{k=0}^{n}\binom{n}{k}^{3}$
Or $\sum_{k=0}^{\lfloor n / 3\rfloor} 2^{k} 3^{\frac{n-3 k}{2}}\binom{n}{k}\binom{n-k}{\frac{n-k}{2}}\binom{\frac{n-k}{2}}{k}$
$k \equiv n \bmod 2$

A set of generalized p-Lucas series

Definition (Adamczewski-Bell-Delaygue, 2016)

Let R be a Dedekind domain and K be its field of fractions. Let \mathcal{S} be a set of maximal ideals of R and $R_{\mathfrak{p}}$ the localization of R at a maximal ideal \mathfrak{p}. Let $\mathbf{x}=\left(x_{1}, \ldots, x_{d}\right)$ and $\mathcal{L}_{d}(R, \mathcal{S})$ denote the set of all power series $f(\mathbf{x})$ in $K[[x]]$ with constant term equal to 1 and such that for every $\mathfrak{p} \in \mathcal{S}$:
(i) $f(\mathbf{x}) \in R_{\mathfrak{p}}[[\mathbf{x}]]$.
(ii) The residue field R / \mathfrak{p} is finite (of characteristic p).
(iii) There exist a positive integer k_{p} and a rational fraction $A_{\mathfrak{p}} \in K(\mathbf{x}) \cap R_{\mathfrak{p}}[[\mathbf{x}]]$ satisfying

$$
f(\mathbf{x}) \equiv A_{\mathfrak{p}}(\mathbf{x}) f\left(\mathbf{x}^{p^{k p}}\right) \quad \bmod \mathfrak{p} R_{\mathfrak{p}}[[\mathbf{x}]] .
$$

(iv) The height of $A_{\mathfrak{p}}$ satisfies $H\left(A_{\mathfrak{p}}\right) \leq C p^{k_{p}}$ for some constant C independent of \mathfrak{p}.

An algebraic independence result

Theorem (Adamczewski-Bell-Delaygue, 2016)

Let $f_{1}(\mathbf{x}), \ldots, f_{r}(\mathbf{x})$ be series in $\mathcal{L}_{d}(R, \mathcal{S})$, where \mathcal{S} is infinite. These series are algebraically dependent over $K(\mathbf{x})$ if and only if there exist integers a_{1}, \ldots, a_{r}, not all zero, such that

$$
f_{1}(\mathbf{x})^{a_{1}} \cdots f_{r}(\mathbf{x})^{a_{r}} \in K(\mathbf{x}) .
$$

Corollary

All elements of the set $\left\{g_{r}(x)=\sum_{n=0}^{\infty}\binom{2 n}{n}^{r} x^{n}: r \geq 2\right\}$ are algebraically independent over $\mathbb{C}(x)$.

Properties of the sets $\mathcal{L}_{d}(R, \mathcal{S})$

The sets $\mathcal{L}_{d}(R, \mathcal{S})$ satisfy the following properties:

- They have a structure of multiplicative group with respect to the usual Cauchy product.
- They are closed under pullback of rational functions.
- They allow one to deal with power series, such as some hypergeometric series, which satisfy p-Lucas congruences only for some infinite subsets of prime numbers.
- They are well-behaved under various specializations of power series in several variables.

However the sets $\mathcal{L}_{d}(R, \mathcal{S})$ are not necessarily closed under formal derivative.

Remark. If $f(x) \equiv A(x) f\left(x^{p}\right) \bmod p \mathbb{Z}[[x]]$, then

$$
f^{\prime}(x) \equiv A^{\prime}(x) f\left(x^{p}\right) \quad \bmod p \mathbb{Z}[[x]] .
$$

q-series and cyclotomic polynomials

Fix a complex number q. Recall the classical q-analogues

$$
[n]_{q}:=\frac{1-q^{n}}{1-q} \quad \text { so that } \quad[n]_{q}!:=\prod_{i=1}^{n} \frac{1-q^{i}}{1-q}
$$

tends to n ! when $q \rightarrow 1$.
The classical q-binomial coefficients are

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}:=\frac{[n]_{q}!}{[n-k]_{q}![k]_{q}!} \in \mathbb{N}[q] .
$$

For a positive integer b, recall the b-th cyclotomic polynomial

$$
\phi_{b}(q):=\prod_{\substack{1 \leq k \leq b \\(k, b)=1}}\left(q-\mathrm{e}^{2 i k \pi / b}\right) .
$$

Extension of the p-Lucas property

In 1967, Fray proved that for all nonnegative integers n and $0 \leq i, j \leq b-1$:

$$
\left[\begin{array}{l}
b n+i \\
b k+j
\end{array}\right]_{q} \equiv\left[\begin{array}{l}
i \\
j
\end{array}\right]_{q}\binom{n}{k} \bmod \phi_{b}(q) \mathbb{Z}[q] .
$$

Definition

For a positive integer b, a sequence $\left(a_{q}(\mathbf{n})\right)_{\mathbf{n} \in \mathbb{N}^{d}}$ with values in $\mathbb{Z}[q]$ is ϕ_{b}-Lucas if

$$
a_{q}(b \mathbf{n}+\mathbf{m}) \equiv a_{q}(\mathbf{m}) a_{1}(\mathbf{n}) \bmod \phi_{b}(q) \mathbb{Z}[q] \quad \text { for all } \quad \mathbf{m} \in\{0, \ldots, b-1\}^{d} .
$$

Remark. If $\left(a_{q}(\mathbf{n})\right)_{\mathbf{n} \in \mathbb{N}^{d}}$ is $\phi_{b^{\prime}}$-Lucas for all b, then $\left(a_{1}(\mathbf{n})\right)_{\mathbf{n} \in \mathbb{N}^{d}}$ is p-Lucas for all primes p. This comes from

$$
\phi_{p}(1)=p .
$$

Another example

We have by Fray (1967), Strehl (1982), Sagan (1992) :

$$
\left[\begin{array}{c}
2(m+n b) \\
m+n b
\end{array}\right]_{q}^{r} \equiv\left[\begin{array}{c}
2 m \\
m
\end{array}\right]_{q}^{r}\binom{2 n}{n}^{r} \quad \bmod \phi_{b}(q) \mathbb{Z}[q]
$$

where n, m, b, r are nonnegative integers with $b, r \geq 1$ and $0 \leq m \leq b-1$.
In terms of generating series, this is equivalent to

$$
f_{r}(q ; x) \equiv A(q ; x) g_{r}\left(x^{b}\right) \quad \bmod \phi_{b}(q) \mathbb{Z}[q][[x]]
$$

where $A(q ; x) \in \mathbb{Z}[q][x]$ of degree (in x) at most $b-1$ and

$$
f_{r}(q ; x):=\sum_{n=0}^{\infty}\left[\begin{array}{c}
2 n \\
n
\end{array}\right]_{q}^{r} x^{n}, \quad g_{r}(x)=f_{r}(1 ; x)
$$

Recall

$$
g_{r}^{\prime}(x) \equiv A^{\prime}(1 ; x) g_{r}\left(x^{p}\right) \quad \bmod p \mathbb{Z}[[x]] .
$$

The p-Lucas algebras

We first extend the framework and sets $\mathcal{L}_{d}(R, \mathcal{S})$ of ABD. Let R be a domain and \mathcal{S} be an infinite set of maximal ideals of R. We say that \mathcal{S} satisfies the zero intersection property (ZIP) if for each infinite subset \mathcal{S}^{\prime} of \mathcal{S}, we have $\bigcap \mathfrak{p}=\{0\}$.

$$
\mathfrak{p} \in \mathcal{S}^{\prime}
$$

Definition

Let $g(\mathbf{x}) \in \mathcal{L}_{d}(R, \mathcal{S})$, where R is a domain and \mathcal{S} satisfies the ZIP. For a sequence $b=\left(b_{\mathfrak{p}}\right)_{\mathfrak{p} \in \mathcal{S}}$ of positive integers, let $\mathcal{A}(g, R, \mathcal{S}, b)$ denote the set of all power series $f(\mathbf{x}) \in K[[\mathbf{x}]]$ for which there exists a positive integer \mathfrak{m} such that for almost all maximal ideals $\mathfrak{p} \in \mathcal{S}$:
(i) $f(\mathbf{x}) \in R_{\mathfrak{p}}[[\mathbf{x}]]$.
(ii) There exists a polynomial $P(y) \in K(\mathbf{x}) \cap R_{\mathfrak{p}}[[\mathbf{x}]][y]$, with degree at most \mathfrak{m} and no constant term, such that

$$
f(\mathbf{x}) \equiv P\left(g\left(\mathbf{x}^{b_{\mathfrak{p}}}\right)\right) \quad \bmod \mathfrak{p} R_{\mathfrak{p}}[[\mathbf{x}]] .
$$

Properties of the sets $\mathcal{A}(g, R, \mathcal{S}, b)$

The sets $\mathcal{A}(g, R, \mathcal{S}, b)$ have a structure of (non-unitary) $K(\mathbf{x})$-algebra, which are well-behaved under specializations of the vectors of variables.

Moreover :
(a) Let $g(\mathbf{x}) \in \mathcal{L}_{d}(R, \mathcal{S})$ and ∂ be a derivation defined on $K[[\mathbf{x}]]$. Choosing $b_{\mathfrak{p}}=p^{k_{\mathfrak{p}}}$ for every $\mathfrak{p} \in \mathcal{S}, \mathcal{A}(g, R, \mathcal{S}, b)$ endowed with ∂ forms a differential $K(\mathbf{x})$-algebra containing $g(\mathbf{x})$.
(b) Let $g(\mathbf{x}) \in \mathcal{L}_{d}(\mathbb{Z}, \mathcal{P})$ and q be a non-zero complex number. Then there exist data (R, \mathcal{S}, b) such that $\mathcal{A}(g, R, \mathcal{S}, b)$ endowed with the partial Jackson q-derivative forms a q-difference $K(\mathbf{x})$-algebra.

Finally, there are explicit K-vector subspaces of $\mathcal{A}(g, R, \mathcal{S}, b)$ which are well-behaved under Hadamard product and diagonalization when g is in an explicit subset of $\mathcal{L}_{d}(R, \mathcal{S})$.

A propagation phenomenon for algebraic independence

Theorem (Adamczewski-Bell-Delaygue-J, 2019)

Let $g_{1}(\mathbf{x}), \ldots, g_{n}(\mathbf{x})$ be power series in $\mathcal{L}_{d}(R, \mathcal{S})$, where \mathcal{S} satisfies the ZIP. Let K be the field of fractions of R and $b=\left(b_{\mathfrak{p}}\right)_{\mathfrak{p} \in \mathcal{S}}$ a sequence of positive integers. For every integer $i \in\{1, \ldots, n\}$, let $f_{i}(\mathbf{x})$ be a non-zero element of $\mathcal{A}\left(g_{i}, R, \mathcal{S}, b\right)$. If $f_{1}(\mathbf{x}), \ldots, f_{n}(\mathbf{x})$ are algebraically dependent over $K(\mathbf{x})$, then there exist $a_{1}, \ldots, a_{n} \in \mathbb{Z}$, not all zero, such that

$$
g_{1}(\mathbf{x})^{a_{1}} \cdots g_{n}(\mathbf{x})^{a_{n}} \in K(\mathbf{x})
$$

In particular, if $g_{1}(\mathbf{x}), \ldots, g_{n}(\mathbf{x})$ are algebraically independent over $K(\mathbf{x})$, then $f_{1}(\mathbf{x}), \ldots, f_{n}(\mathbf{x})$ are algebraically independent over $K(\mathbf{x})$.

Taking R a Dedekind domain, we have $g_{i} \in \mathcal{A}\left(g_{i}, R, \mathcal{S}, b\right)$ by choosing the sequence $b_{\mathfrak{p}}=1$ and $P(y)=y$. As for Dedekind domains maximal ideals coincide with primes, the ZIP is satisfied by any infinite family of prime ideals and we derive the algebraic independence criterion of $A B D$.

A consequence on derivatives

Corollary

For every positive integer r, let $P_{r}(x, y)$ be a non-zero polynomial in $\overline{\mathbb{Q}}[x, y]$ such that the power series

$$
f_{r}(x):=\sum_{n=0}^{\infty} \sum_{k=0}^{n} P_{r}(k, n)\binom{n}{k}^{2 r}\binom{n+k}{k}^{2 r} x^{n}
$$

is non-zero. Then all elements of the set $\mathcal{F}:=\left\{f_{r}: r \geq 1\right\}$ are algebraically independent over $\mathbb{C}(x)$.
Proof. Use the series $g_{r}\left(x_{1}, x_{2}\right):=\sum_{n_{1}, n_{2} \geq 0} \frac{\left(2 n_{1}+n_{2}\right)!^{2 r}}{n_{1}!^{4 r} n_{2}!^{2 r}} x_{1}^{n_{1}} x_{2}^{n_{2}}$ and

$$
\left(x_{1} \frac{\partial}{\partial x_{1}}\right)^{i}\left(x_{1} \frac{\partial}{\partial x_{1}}\right)^{j}\left(g_{r}\right)(x, x)=\sum_{n=0}^{\infty} \sum_{k=0}^{n} k^{i}(n-k)^{j}\binom{n}{k}^{2 r}\binom{n+k}{n}^{2 r} x^{n}
$$

Consequences on q-analogues

Corollary 1

Let $q \in \mathbb{C}^{*}$. The series $f_{r}(q ; x)=\sum_{n=0}^{\infty}\left[\begin{array}{c}2 n \\ n\end{array}\right]_{q}^{r} x^{n}, \quad r \geq 2$, are algebraically independent over $\mathbb{C}(x)$.

Proof. There are data R, \mathcal{S}, b such that $f_{r}(q ; x)$ belongs to $\mathcal{A}\left(f_{r}(1 ; x), R, \mathcal{S}, b\right)$.

Corollary 2

Let $q \in \mathbb{C}^{*}$. The series
$f_{r}(q ; x)=\sum_{n=0}^{\infty} \sum_{k=0}^{n} q^{r(n-k)^{2}}\left[\begin{array}{l}n \\ k\end{array}\right]_{q}^{2 r}\left[\begin{array}{c}n+k \\ k\end{array}\right]_{q}^{2 r} x^{n}, \quad r \geq 1$, are algebraically independent over $\mathbb{C}(x)$.

Algebraic relations within p-Lucas algebras

Let $\mathcal{A}^{k}(g, R, \mathcal{S}, b)$ denote the set of power series f in $\mathcal{A}(g, R, \mathcal{S}, b)$ for which the polynomial $P(y)$ can be chosen a monomial of degree k in y. Then $\mathcal{A}(g, R, \mathcal{S}, b)$ is a graded algebra :

$$
\mathcal{A}(g, R, \mathcal{S}, b)=\bigoplus_{k \geq 1} \mathcal{A}^{k}(g, R, \mathcal{S}, b)=\bigoplus_{k \geq 1} \mathcal{A}^{1}\left(g^{k}, R, \mathcal{S}, b\right)
$$

Theorem (Adamczewski-Bell-Delaygue-J, 2019)

Let R be a domain, K its field of fractions, \mathcal{S} a set of maximal ideals of R with finite index satisfying the ZIP. Let $g \in \mathcal{L}_{d}(R, \mathcal{S})$ be transcendental over $K(\mathbf{x})$ and let $b=\left(b_{\mathfrak{p}}\right)_{\mathfrak{p} \in \mathcal{S}}$ be a family of positive integers. Consider non-zero power series f_{1}, \ldots, f_{n} in $\mathcal{A}^{k}(g, R, \mathcal{S}, b)$, for some positive integer k. Then the ideal of algebraic relations between f_{1}, \ldots, f_{n}

$$
I:=\left\{P \in K(\mathbf{x})\left[y_{1}, \ldots, y_{n}\right]: P\left(f_{1}, \ldots, f_{n}\right)=0\right\}
$$

is a homogeneous ideal of $K(\mathbf{x})\left[y_{1}, \ldots, y_{n}\right]$.

A consequence for G-functions

Proposition

Let R be a domain, K be its field of fractions, and \mathcal{S} a set of maximal ideals of R with finite index satisfying the ZIP. Let $g \in \mathcal{L}_{1}(R, \mathcal{S})$ be a transcendental power series over $K(x)$ and $b=\left(b_{\mathfrak{p}}\right)_{\mathfrak{p} \in \mathcal{S}}$ a sequence of positive integers. Let f_{1} and f_{2} be two power series in $\mathcal{A}^{k}(g, R, \mathcal{S}, b)$, where k is a positive integer. If f_{1} and f_{2} are algebraically dependent over $K(x)$, then the ratio f_{1} / f_{2} belongs to $K(x)$.

Corollary

Let K be a number field and \mathcal{S} be an infinite set of maximal ideals of \mathcal{O}_{K}, the ring of integers of K. Let $g(x)$ be a transcendental G-function in $\mathcal{L}_{1}\left(\mathcal{O}_{K}, \mathcal{S}\right)$. Then $g(x)$ and $g^{\prime}(x)$ are algebraically independent over $K(x)$.

